会员投稿

网站管理

设为首页

加入收藏

 

当前位置:首页 > 汽机专业 > 详细内容
汽轮机非稳定性振动诊断与分析
发布时间:2009/10/10  阅读次数:1862  字体大小: 【】 【】【
本广告位全面优惠招商!欢迎大家投放广告!广告投放联系方式

3.4 关于汽缸位移问题的分析
测试中虽然测量到振动增大时#2、#1轴颈有抬高现象,但需要注意,这种抬高是轴颈相对于轴承或轴承座,而不是相对于高压缸缸体。通流间隙取决于转子相对于缸体的位置,严格地说,是相对于高缸内缸的位置。
如果高缸整体定位松动或高内缸定位松动,在运行过程中发生位移,均可能引起间隙性的动静碰磨。
#2机的检修记录还反映出每次检修揭开高缸均发现隔板汽封南侧间隙小。这是一个值得注意的现象,南侧间隙小,意味着南侧可能碰磨,这与测试中大轴振动时#1、#2轴颈向上偏南位移是一致的。
如前分析,测试表明各次振动增大的过程可以分为两个阶段,第一阶段振幅缓慢增加但各测点间隙电压基本保持不变,持续约一小时进入第二阶段,各测点振幅明显增大,同时#2瓦、#1瓦轴颈向上方偏南(右)移动。这说明振动增大在前,轴颈上抬在后。大轴振动发生前,有一段很长的初期形成阶段,振动缓慢增加到一定程度,振幅开始明显增长,如果是碰磨,则在轴颈位移前一小时已经开始发生。先位移后碰磨的推理似乎是不妥的。这样,寻找为何轴颈位移原因的重要性就降为次要的,需要首先分析应该是轴颈发生位移之前振动增大的原因。
3.5 摩擦振动的故障特征和机理
3.5.1 摩擦振动的特征
a.由于转子热弯曲将产生新的不平衡力,因此振动信号的主频仍为工频,但是由于受到冲击和一些非线性因数的影响,可能会出现少量分频、倍频和高频分量,有时波形存在“削顶”现象。
b.发生摩擦时,振动的幅值和相位都具有波动特性,波动持续时间可能比较长。摩擦严重时,幅值和相位不再波动,振幅会急剧增大。
c.降速过临界时的振动一般较正常升速时大,停机后转子静止时,测量大轴的晃度比原始值明显增加。
3.5.2 摩擦振动的机理 
对汽轮机转子来讲,摩擦可以产生抖动、涡动等现象,但实际有影响的主要是转子热弯曲。动静摩擦时圆周上各点的摩擦程度是不同的,由于重摩擦侧温度高于轻摩擦侧,导致转子径向截面上温度不均匀,局部加热造成转子热弯曲,产生一个新的不平衡力作用到转子上引起振动。
a.转速低于临界转速时的摩擦振动
如图中,转子原来的不平衡为OA,振动高点为H,由于滞后角小于90°,振动高点H是摩重点,该点温度高于对面一侧,受热弯曲的影响在此方向产生一个热不平衡OH, OH 与OA合成为一个新的不平衡OA1。OA1较原不平衡逆转了一个角度并且大于 OA,造成动静摩擦进 一步加剧,形成恶性循环,转子弯曲越来越大,很可能造成大轴弯曲事故。
b.工作转速时的摩擦振动
目前,汽轮发电机组的工作转速一般都高于各转子一阶临界转速,而低于二阶临界转速,工作转速下二阶不平衡与其引起的振动之间的滞后角仍小于90°,如果摩擦发生在对二阶不平衡比较敏感的区段,如转轴的端部,激起了比较大的二阶不平衡分量,那么仍可能发生比较严重的摩擦振动。
如果摩擦引起的热弯曲与原不平衡反相,则振动呈减小趋势,一段时间后摩擦消失,动静接触点脱离,径向温差减小,振动恢复原状,此时在原不平衡作用下又会发生摩擦,如此反复,汽封显得相对比较“耐磨”,振幅发生时间长、波动幅度大,# 2机振动与此类似。

4.对振动性质的诊断及处理意见

4.1 振动性质诊断的结论
根据上述特征,现对#2机组#1、#2瓦振动故障确定为高压通流部分动静碰磨,径向碰磨的可能性大于轴向碰磨,#2瓦轴承箱或前箱内存在碰磨的可能性不大。
这个结论的依据主要是:
(1)振动增大的成分是一倍频;
(2)振幅增加的同时,相位增加;振幅减小,相位也随之减小;
(3)振动增大和减小的速率缓慢,与转子热弯曲的振动特征类似;
(4)一倍频振幅增大的同时,三倍频和三倍频分量有少量的增大;
(5)低频振幅小且变化不明显;
(6)在多次发生轻微碰磨,运行一段时间后振动已经自行消失。
4.2 处理意见
尽管#2机振动已经消失,但为慎重起见,对碰磨为#2机振动主要原因的可能性从检修和运行角度做深入地讨论分析;进一步研究分析引起碰磨的原因;建议从以下几点考虑:
  • 高缸运行中位移的可能;
  • 隔板变形或位移的可能;
  • 通流间隙南侧偏小的原因;
  • 高外缸、内缸滑销系统定位不准的可能性;
关于处理方法,可以不考虑安排实施提高轴系稳定性的任何措施,如改瓦,调对中、标高等;不考虑实施消除汽流激振的措施。消除碰磨的工作,主要限于高压缸,如果从缸外部处理,通常是调整轴承标高或抬高缸体,改变缸内通流间隙,消除碰磨点。如果高缸还存在水平位移,则需要查找位移原因,有目标地采取措施。如果认定振动原因是碰磨而又无法肯定碰磨的原因,一个不得已而为之的办法就是根据检查的碰磨具体部位,放大动静间隙。

5.

一般机组,碰磨可能发生在轴端汽封、隔板汽封、叶顶汽封;多数是径向碰、也可能是轴向碰。通常情况,引起碰磨的原因很多,较常见的原因有间隙过小、缸胀不畅、缸变形、缸跑偏、支撑标高变化、隔板变形、真空影响(主要对低压转子)、振动过大等。
结合振动测试特征、相关运行参数以及#2机检修记录,分析发现, #2机振动增大与高缸、中缸胀差、膨胀无直接关系;与主蒸汽参数无关;与#1抽压力无关;与油温关系不大。并且可以初步排除碰磨原因来自缸胀不畅和滑销系统存在缺陷造成缸变形引发碰磨的可能;排除调门开启次序不妥造成碰磨的可能;排除转子热弯曲引起的间隙消失导致碰磨。
根据同类机组运行经验,由于动静碰磨而引起的汽轮机非稳定性振动,碰磨点不需要很大,只要有局部范围的动静接触,就可以引起机组足够大的振动,从#2机实际振动增大的幅度和速率看,碰磨并不严重,动静接触范围应该不大,特别是2号机轴系振动出现历史最大值以后,机组振动便一直处于优良状况运行,且未出现任何不稳定趋势;这样,因动静碰磨而引起的汽轮机非稳定性振动运行中自行消失后,揭缸检查也很难以寻找到磨痕。

参考资料:

(1)西安热工研究所,施维新,汽轮发电机组振动
(2)东南大学,陆颂元、王青华,抚顺发电公司2号机振动测试报告
(3)湖南电力试验研究所,王咏梅,大型汽轮机摩擦振动的故障特征分析
(4)抚顺发电有限责任公司: 2号汽轮发电机组检修记录
3.4 关于汽缸位移问题的分析
测试中虽然测量到振动增大时#2、#1轴颈有抬高现象,但需要注意,这种抬高是轴颈相对于轴承或轴承座,而不是相对于高压缸缸体。通流间隙取决于转子相对于缸体的位置,严格地说,是相对于高缸内缸的位置。
如果高缸整体定位松动或高内缸定位松动,在运行过程中发生位移,均可能引起间隙性的动静碰磨。
#2机的检修记录还反映出每次检修揭开高缸均发现隔板汽封南侧间隙小。这是一个值得注意的现象,南侧间隙小,意味着南侧可能碰磨,这与测试中大轴振动时#1、#2轴颈向上偏南位移是一致的。
如前分析,测试表明各次振动增大的过程可以分为两个阶段,第一阶段振幅缓慢增加但各测点间隙电压基本保持不变,持续约一小时进入第二阶段,各测点振幅明显增大,同时#2瓦、#1瓦轴颈向上方偏南(右)移动。这说明振动增大在前,轴颈上抬在后。大轴振动发生前,有一段很长的初期形成阶段,振动缓慢增加到一定程度,振幅开始明显增长,如果是碰磨,则在轴颈位移前一小时已经开始发生。先位移后碰磨的推理似乎是不妥的。这样,寻找为何轴颈位移原因的重要性就降为次要的,需要首先分析应该是轴颈发生位移之前振动增大的原因。
3.5 摩擦振动的故障特征和机理
3.5.1 摩擦振动的特征
a.由于转子热弯曲将产生新的不平衡力,因此振动信号的主频仍为工频,但是由于受到冲击和一些非线性因数的影响,可能会出现少量分频、倍频和高频分量,有时波形存在“削顶”现象。
b.发生摩擦时,振动的幅值和相位都具有波动特性,波动持续时间可能比较长。摩擦严重时,幅值和相位不再波动,振幅会急剧增大。
c.降速过临界时的振动一般较正常升速时大,停机后转子静止时,测量大轴的晃度比原始值明显增加。
3.5.2 摩擦振动的机理 
对汽轮机转子来讲,摩擦可以产生抖动、涡动等现象,但实际有影响的主要是转子热弯曲。动静摩擦时圆周上各点的摩擦程度是不同的,由于重摩擦侧温度高于轻摩擦侧,导致转子径向截面上温度不均匀,局部加热造成转子热弯曲,产生一个新的不平衡力作用到转子上引起振动。
a.转速低于临界转速时的摩擦振动
如图中,转子原来的不平衡为OA,振动高点为H,由于滞后角小于90°,振动高点H是摩重点,该点温度高于对面一侧,受热弯曲的影响在此方向产生一个热不平衡OH, OH 与OA合成为一个新的不平衡OA1。OA1较原不平衡逆转了一个角度并且大于 OA,造成动静摩擦进 一步加剧,形成恶性循环,转子弯曲越来越大,很可能造成大轴弯曲事故。
b.工作转速时的摩擦振动
目前,汽轮发电机组的工作转速一般都高于各转子一阶临界转速,而低于二阶临界转速,工作转速下二阶不平衡与其引起的振动之间的滞后角仍小于90°,如果摩擦发生在对二阶不平衡比较敏感的区段,如转轴的端部,激起了比较大的二阶不平衡分量,那么仍可能发生比较严重的摩擦振动。
如果摩擦引起的热弯曲与原不平衡反相,则振动呈减小趋势,一段时间后摩擦消失,动静接触点脱离,径向温差减小,振动恢复原状,此时在原不平衡作用下又会发生摩擦,如此反复,汽封显得相对比较“耐磨”,振幅发生时间长、波动幅度大,# 2机振动与此类似。

4.对振动性质的诊断及处理意见

4.1 振动性质诊断的结论
根据上述特征,现对#2机组#1、#2瓦振动故障确定为高压通流部分动静碰磨,径向碰磨的可能性大于轴向碰磨,#2瓦轴承箱或前箱内存在碰磨的可能性不大。
这个结论的依据主要是:
(1)振动增大的成分是一倍频;
(2)振幅增加的同时,相位增加;振幅减小,相位也随之减小;
(3)振动增大和减小的速率缓慢,与转子热弯曲的振动特征类似;
(4)一倍频振幅增大的同时,三倍频和三倍频分量有少量的增大;
(5)低频振幅小且变化不明显;
(6)在多次发生轻微碰磨,运行一段时间后振动已经自行消失。
4.2 处理意见
尽管#2机振动已经消失,但为慎重起见,对碰磨为#2机振动主要原因的可能性从检修和运行角度做深入地讨论分析;进一步研究分析引起碰磨的原因;建议从以下几点考虑:
  • 高缸运行中位移的可能;
  • 隔板变形或位移的可能;
  • 通流间隙南侧偏小的原因;
  • 高外缸、内缸滑销系统定位不准的可能性;
关于处理方法,可以不考虑安排实施提高轴系稳定性的任何措施,如改瓦,调对中、标高等;不考虑实施消除汽流激振的措施。消除碰磨的工作,主要限于高压缸,如果从缸外部处理,通常是调整轴承标高或抬高缸体,改变缸内通流间隙,消除碰磨点。如果高缸还存在水平位移,则需要查找位移原因,有目标地采取措施。如果认定振动原因是碰磨而又无法肯定碰磨的原因,一个不得已而为之的办法就是根据检查的碰磨具体部位,放大动静间隙。

5.

一般机组,碰磨可能发生在轴端汽封、隔板汽封、叶顶汽封;多数是径向碰、也可能是轴向碰。通常情况,引起碰磨的原因很多,较常见的原因有间隙过小、缸胀不畅、缸变形、缸跑偏、支撑标高变化、隔板变形、真空影响(主要对低压转子)、振动过大等。
结合振动测试特征、相关运行参数以及#2机检修记录,分析发现, #2机振动增大与高缸、中缸胀差、膨胀无直接关系;与主蒸汽参数无关;与#1抽压力无关;与油温关系不大。并且可以初步排除碰磨原因来自缸胀不畅和滑销系统存在缺陷造成缸变形引发碰磨的可能;排除调门开启次序不妥造成碰磨的可能;排除转子热弯曲引起的间隙消失导致碰磨。
根据同类机组运行经验,由于动静碰磨而引起的汽轮机非稳定性振动,碰磨点不需要很大,只要有局部范围的动静接触,就可以引起机组足够大的振动,从#2机实际振动增大的幅度和速率看,碰磨并不严重,动静接触范围应该不大,特别是2号机轴系振动出现历史最大值以后,机组振动便一直处于优良状况运行,且未出现任何不稳定趋势;这样,因动静碰磨而引起的汽轮机非稳定性振动运行中自行消失后,揭缸检查也很难以寻找到磨痕。

参考资料:

(1)西安热工研究所,施维新,汽轮发电机组振动
(2)东南大学,陆颂元、王青华,抚顺发电公司2号机振动测试报告
(3)湖南电力试验研究所,王咏梅,大型汽轮机摩擦振动的故障特征分析
(4)抚顺发电有限责任公司: 2号汽轮发电机组检修记录
我要评论
  • 匿名发表
  • [添加到收藏夹]
  • 发表评论:(匿名发表无需登录,已登录用户可直接发表。) 登录状态:未登录
最新评论
所有评论[0]
    暂无已审核评论!
广告

甄长红  版权所有 

copyright 1991-2019 青果园电厂化学资料网 ( www.qgyhx.cn ) All rights reserved 陇ICP备09001450号

申请链接  广告服务  联系我们  关于我们  版权声明  在线留言

网站由中网提供技术支持