会员投稿

网站管理

设为首页

加入收藏

 

当前位置:首页 > vip精品资料 > 详细内容
离子交换树脂综合知识
发布时间:2009/6/2  阅读次数:5015  字体大小: 【】 【】【
本广告位全面优惠招商!欢迎大家投放广告!广告投放联系方式

离子交换树脂综合知识

1
树脂的储存和运输

1、离子交换树脂在长期储存中,或需在停用设备内长期存放,强型树脂(强酸性和强碱性树脂)应转为盐型,弱型树脂(弱酸性和弱碱性树脂)可转为 相应的氢型或游离胺型,也可转变为盐型,以保持树脂性能的稳定。然后浸泡在洁净的水中。停用设备若须将水排去,则应密封,以防树脂中水份散失。
2、离子交换树脂内含有一定的平衡水份,在储存和运输中应保持湿润,防止脱水。树脂应储存在室内或加遮盖,环境温度以5°C-40°C为宜。袋装树脂应避免直接日晒,远离锅炉、取暖器等加热装置,避免脱水。
若发现树脂已有脱水现象,切勿将树脂直接放于水中,以免干树脂遇水急剧溶胀而破碎。应根据其脱水程度,用10%左右的食盐水慢慢加入到树脂中,浸泡数小时后用洁净水逐步稀释。
3、当环境温度在0°C或以下时,为防止树脂因内部水份结冰而崩裂,应做好保温措施,或根据气温条件,将树脂存于相应浓度的食盐水中,防止冰冻。若发现树脂已被冻,则应让其缓慢自然解冻,切不可用机械力施于树脂。
食盐溶液浓度与冰点的关系如下表:

浓度

5%

10%

15%

20%

23.5%

冰点

-3°C

-7°C

-10.8°C

-16.3°C

-21.2°C

4、长期停用而放置在交换器内的树脂,为防止微生物(如藻类、细菌等)对树脂的不可逆污染,树脂在停用前须彻底反洗,以除去运行时积聚的悬浮物质,并注意定期冲洗和换水。或彻底反洗后采用以下措施:
  阴树脂:用3倍树脂体积的10%NaCl+2%NaOH混合液分两次通过树脂层,每次静止浸泡数小时,然后将其排去。如有必要,在重新启动前用2倍树脂体积的0.2%过氧化氢(H2O2)溶液淋洗树脂层。
  阳树脂:在阳离子交换器及管系内可充入0.5%的甲醛溶液,并在停用期间保持此浓度。也可用食盐水浸泡。在设备重新启动前用0.2%过氧化氢或0.5%甲醛溶液淋洗。



2
树脂的预处理

在离子交换树脂的工业产品中,常含有少量的有机低聚物及一些无机杂质。在使用初期会逐渐溶解释放,影响出水水质或产品质量。因此,新树脂在使用前必须进行预处理,具体方法如下:
1、树脂装入交换器后,用洁净水反洗树脂层,展开率为50-70%,直至出水清晰、无气味、无细碎树脂为止。
2、用约2倍树脂体积的4-5%HCl溶液,以2m/h的流速通过树脂层。全部通入后,浸泡4-8小时,排去酸液,用洁净水冲洗至出水呈中性,冲洗流速为10-20m/h。
3、用约2倍树脂体积的2-5%NaOH溶液,按上面进HCl溶液的方法通入和浸泡。排去碱液,用洁净水冲洗至出水呈中性,冲洗流速同上。
酸、碱溶液若能重复进行2-3次,则效果更佳。
经预处理后的树脂,在第一次投入运行时应适当增加再生剂用量,以保证树脂获得充分的再生。


3
有机物的污染及处理

一、强碱阴树脂遭受有机物污染的特征:
1、树脂被污染后,颜色变深,从淡黄色变为深棕色,直至黑色。
2、树脂的工作交换容量降低,阴床的周期制水量明显下降。
3、有机酸漏入出水中,使出水的电导率增大。
4、出水的pH值降低。正常运行情况下,阴床出水的pH值一般在7-8范围内(因有NaOH漏过),树脂遭受污染后,因有机酸的漏过,可使出水的pH值降至5.4-5.7。
5、SiO2含量增大。水中所含有机酸(富维酸和腐殖酸)的解离常数大于H2SiO3,因此,附着在树脂上的有机物可以抑制树脂对H2SiO3的交换或排代出已吸着的H2SiO3,造成阴床SiO2过早漏过。
6、清洗水用量增加。因为吸着在树脂上的有机物含有大量的-COOH基团,树脂再生时变为-COONa,在清洗过程中,这些Na+不断被阴床进水中的矿物酸排代出来,增加了清洗阴床的时间和用水量。

二、有机物污染对强碱阴树脂的影响
1、强碱阴树脂对有机物的吸着力。天然水中的有机物(以富维酸和 腐殖酸为代表)经过H+交换及除碳后,因pH值的降低,有机物几乎全部以分子状态存在于阴床进水中。因为腐殖酸分子量大,疏水性强,与强碱阴树脂的苯乙烯 -二乙烯苯聚合的骨架具有较强的吸附能力-范德华力,同时,这些大分子的有机酸都含有多个羧酸基团,与OH型强碱阴树脂的季胺基官能团也具有较强的化学亲 和力,因此使有机酸被强碱树脂牢固地吸着于颗粒表面。
强碱阴树脂的骨架改为亲水性的丙烯酸与二乙烯苯的聚合物,减少了骨架对有机酸吸附的范德华力,会使有机酸的吸着率略有降低。
如将OH型强碱阴树脂改为Cl型,则因改变了有机酸与强碱阴树脂的OH之间的酸碱中和反应,使化学亲和力下降,树脂对有机物的吸着率也会降低。这种基团型态对有机物吸着的影响大于骨架材质的影响。
2、有机物的再生洗脱。新的凝胶型强碱阴树脂的对有机物的吸着率很高(95%),洗脱率却很低(15%)。随着运行周期的增加,吸着率基本不变,洗脱率 虽从15%上升到60%以上。但是,到树脂工作交换容量开始降低时,洗脱率也只有60%,这说明有机物仍不断地在树脂上积聚,它会进一步降低树脂的工作交 换容量,并使出水质量恶化。
3、有机物特性的影响。分子量比较大的腐殖酸,一方面由于分子量大,亲水性较差,另一方面因为所含的-COOH较 少,所以它们主要是以范德华力吸附于树脂的骨架上,难于洗脱。富维酸则因分子量小,含有的-COOH多,所以多以化学亲和力与树脂的多个交换基团相结合, 再生过程中较容易被洗脱。
对天然水中的有机物根据其在水中的溶解度,可以分为悬浮的、胶体的和溶解的三种。对于以物理吸附作用附着于树脂表面 的悬浮有机物,可以使用加强过滤或对污染的树脂进行空气擦洗、超声波清洗等方法去除。胶体的有机物一般是带有负电荷的,它们的粒径在0.2-1.0nm之 间,对树脂的污染既是物理性的,又是化学性的,可通过混凝澄清或超过滤的方法去除。溶解性的有机物是污染强碱阴树脂的主要成分,它们以范德华力和化学亲和 力吸着于强碱阴树脂,洗脱率低,最终影响树脂的工作交换容量和出水质量。
4、对树脂工作交换容量的影响。由于强碱阴树脂上有机物的不断积聚,一方面部分交换基团被占据,再生时不能洗脱,减少了树脂的交换容量;另一方面这些有机物会在运行中不断溶解,并因有机酸的酸性比H2SiO3强,而抵制强碱阴树脂对H2SiO3的吸收,造成H2SiO3过早地在出水中漏过。因为阴床的失效终点是用SiO2的漏过量确定的,所以H2SiO3过早的漏过必然会使树脂的工作交换容量降低。后者只降低树脂的工作交换容量,而全交换容量不变。
5、对出水质量的影响。被有机物污染的强碱阴树脂,因为附着有许多大分子的有机酸,它们所含的部分被水中的矿质酸所排代,这就造成出水电导率的升高。这一作用,一方面增加了清洗水的用量和清洗时间,另一方面有机酸溶入出水中也会造成出水质量的降低。
树脂上附着的有机酸,也会逐渐溶于出水中,使出水的pH值降低,SiO2含量增大。

三、防止强碱树脂遭受有机物污染的方法
1、添加氧化剂。添加氧化剂是除去天然水中有机物的常用方 法,它能起到较好的杀菌和灭藻的作用。常用的氧化剂有氯气和臭氧。游离氯在水中分解为次氯酸,能降低天然水中80%左右的COD,但是过量的氧化剂会对凝 胶型苯乙烯系强碱树脂造成损害。在采用添加氧化剂方法去除COD时,必须去除残余的氧化剂,常用的方法为活性炭过滤。
2、混凝-澄清过滤。当天然水中有悬浮的和胶体的有机物时,使用混凝澄清和过滤的方法去除是很有效的。使用混凝澄清的方法还可去除粒径在2-10mm的杂质,对粒径为0.2-1mm的腐殖物,大约可以去除60-80%。
3、活性炭过滤。活性炭可以用于吸附多种物质,包括无机、有机的胶体和溶解的高分子有机物等,同时,还可以除去水中的游离氯和氯胺等。
4、有机物清除器。包括Cl型有机物清除器和OH型有机物清除器。
5、选择抗污染的树脂。包括选用大孔型树脂、均孔树脂、大孔型弱碱阴树脂以及丙烯酸系强碱树脂。
6、丙烯酸系强碱树脂的特点有:
(1)交换容量高,交换速度快;
(2)物理稳定性好,使用寿命长;
(3)能有效地去除天然水中的有机物,并在再生过程中能很好地洗脱。
丙烯酸系强碱树脂除了含有强碱基团外,尚含有一定量的弱碱叔胺基团,所以具有较高的交换容量,一般可达800-1100mol/m3R。 当进水中弱酸阴离子/总阴离子的比值大于20%时,其工作交换容量有一定的下降,这是由于该树脂含有一定的弱碱基团的结果。当水中的游离矿质酸(简称 FMA)含量超过90%时,使用丙烯酸系强碱树脂可以相当于弱、强型树脂联合应用工艺的串联系统或双室浮床的效果;FMA含量为80-90%时,可相当于 双层床的效果;FMA含量在67-80%以下时,可降低再生剂用量,以保持经济的比耗。
丙烯酸系强碱树脂具有弹性和多孔结构,从Cl型变为OH型时,其体积膨胀率只在7%左右,明显地小于苯乙烯系同等交联度的强碱树脂和弱碱树脂。在工业设备中运行两年(共580个周期),没有发现树脂颗粒的破碎现象。
由于丙烯酸系强碱树脂的骨架与官能团是由酰胺键连接的,因此降低了这种的树脂的热稳定性,其使用温度为30°C,最高不超过35°C。
丙烯酸系强碱树脂对有机物具有良好的吸附和解析能力,不易被有机物所污染。

四、强碱阴树脂的复苏
  1、复苏液的选择。对强碱树脂吸着的,不能用正常再生方法交换出来的杂质,定期地进行一些有针对性的处理,以提高树脂交换性能的方法,称为树脂的复苏。复苏的方法要根据污染树脂的杂质性质进行选择,如铁的污染可用HCl清洗,吸着的有机物可用碱性氯化钠溶液洗去等。
不同成分的复苏液,消除强碱树脂上的有机物的效果有所不同,NaNO3、NaCl和Na2SO4的碱性混合液都有良好的洗脱效果,尤以NaNO3的碱性混合液最佳。
经对碱性氯化钠溶液的浓度进行选择性试验,结果表明以10%NaCl + 2-5%NaOH混合液的效果较佳。
2、常用的清洗方法。
(1)碱性氯化钠混合液清洗:氯化钠浓度为10%,氢氧化钠浓度为2-5%,每升树脂用量为160克NaCl及32克NaOH。阴床清洗需3个树脂床体积,如为混床清洗,应为阳、阴树脂总量的3倍体积,溶液应先预热至35°C。
将交换床上部人孔打开,疏水至水位在树脂表面5-10cm处,如为阴床单床,第一个床体积的碱性氯化钠溶液流经树脂床的流速不超过2个床体积/小时,疏 水速率使液位维持在树脂表面上5-10cm处。第2床体积溶液的进入速率与前同,并保持在树脂床内约8小时或放置过夜,通过空气排管在整个期间不时搅拌。
浸泡完毕后,进入第3床体积碱性氯化钠溶液,流速如前。装回人孔,以阳床出水或生水冲洗。
如为混床系统,碱性氯化钠溶液则进入阳、阴树脂层,疏水如前述,然后进入第一床体积的碱性氯化钠溶液,淋洗过程也与阴床单床相同。
在淋洗前,人孔须装回,使用床内正常布水系统进行淋洗。
清洗后,阴床单床系统的再生,至少须用96克NaOH/升树脂的再生水平,再生后进行淋洗,并再次再生和淋洗,共再生两次。
混床系统则应先反洗将阳、阴树脂分层,将阳树脂及阴树脂都分别再生两次。阴树脂的再生水平如前,而阳树脂则至少用100克HCl/升树脂的再生水平。
这里必须再次强调,树脂要再生两次,且两次再生间要淋洗。
(2)次氯酸钠清洗:这是在树脂受到严重污染,用碱性氯化钠溶液无法复苏时使用。这方法虽然不常使用,但是绝对安全的。
在阴床单床或混床系统,树脂须先用至少一个床体积的10%盐水,使树脂彻底失效,混床中的阳树脂必须全部转为钠型。
准备3个床体积的次氯酸钠溶液,溶液中有效氯的含量为1%。
次氯酸钠清洗与碱性氯化钠清洗步骤相似,除了第二床体积的浸泡贮留时间为4小时,且溶液不加热。在混床清洗时,在用酸再生阳树脂前,最后的痕量的次氯酸钠必须淋洗干净。
注意:次氯酸钠是强烈的漂白剂,有关注意事项,操作人员必须知晓和遵守,使用次氯酸钠清洗后,疏出的废液必须冲洗干净,否则当废酸液进入时将在下水道内产生氯气。


4
离子交换树脂预处理方法

GB/T5476—1996

前 言
本标准代替GB/T5476—1985离子交换树脂预处理方法。
这次标准修订时,将原标准中3.3试样的酸碱处理和3.5基准型试样的制备合并为本标准中5.3试样的制备,增加预处理单次操作的试剂用量,简化操作步骤,缩短操作时间。

1 范围
本标准规定了离子交换树脂的预处理方法。本标准适用于强酸、弱酸、强碱或弱碱性的离子交换树脂的预处理。

2 引用标准
下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GB/T5475—— 85离子交换树脂取样方法
GB/T12598—— 90离子交换树脂渗磨圆球率、磨后圆球率的测定

3 方法提要
在检测离子交换树脂的各项性能之前,先用水反洗树脂,除去机械杂质,再通过规定的酸、碱溶液除去可溶物,同时将树脂转为具有下列离子型式的试样:
—— 强酸性阳离子交换树脂为钠型。
—— 弱酸性阳离子交换树脂为氢型。
—— 强碱性阴离子交换树脂为氯型。
—— 弱碱性阴离子交换树脂为游离胺型。

4 试剂和溶液
4.1 盐酸溶液:C(HCl)=1mol/L,量取盐酸90mL稀释至1000mL,摇匀。
4.2 氢氧化钠标准溶液:C(NaOH)=1mol/L,称取100g氢氧化钠,溶于100mL水中,摇匀,注入聚乙烯容器中,密闭放置至溶液清亮,用塑料管虹吸52mL的上层清液,注入1000mL无二氧化碳的水中,摇匀。
4.3 甲基橙指示液:1g/L,称取0.1g甲基橙,溶于70℃水中,冷却稀释至100mL。
4.4 酚酞指示液:10g/L,称取1.0g酚酞,溶于乙醇,稀释至100mL。
4.5 纯水:电导率(25℃)不大于5.0μs/cm。

5 仪器和设备
5.1 交换柱:玻璃交换柱,内径35mm,高400mm,带有1号或2号微孔砂芯(见图1),或有机玻璃交换柱,见GB/T12598中的图1。
5.2 预处理装置,见图2。
5.3 分液漏斗:容量250mL-500mL。
5.4 广口瓶:容量1250mL-250mL。

6 操作步骤
6.1采样
采样按GB/T5475规定的方法进行。
6.2 反洗
量取与约25mL-50mL树脂,置于交换柱中,用纯水进行反洗,树脂展开率为50%-100%,直至试样中无可见机械杂质,出水澄清为止。
6.3 试样的制备
6.3.1 在预处理装置中(见图2),使液面高出树脂层约10mm,保证树脂层中无气泡。根据树脂的种类按表1规定的第一步操作所需的试剂量和流量通过树脂层,直至液面高出树脂层表面10mm为止。然后用纯水按表1规定的水洗流量和时间进行水洗。
6.3.2 按表1中规定的第二步操作所需的试剂量和和流量通过树脂层,直至液面高出树脂层表面10mm为止。然后用纯水按表1规定的水洗流量和时间进行水洗,直至用规定的指示剂检验流出液呈表中规定的颜色为止。

表1试样预处理条件


试样种类
强酸
弱酸
强碱
弱碱
第一步
操作
试剂
HCl
NaOH
NaOH
HCl
浓度,mol/L
1
体积数,mL
400
流量,mL/min
13-14
6-7
13-14
6-7
水洗流量,mL/min
25-30
水洗时间,min
20-30
第二步操作
试剂
NaOH
HCl
HCl
NaOH
浓度,mol/L
1
体积数,mL
400
流量,mL/min
13-14
6-7
13-14
6-7
水洗流量,mL/min
25-30
指示剂
酚酞
甲基橙
甲基橙>
酚酞
终点颜色
无色
黄色
黄色
无色

6.3.3 将交换柱中的树脂转入清洁的广口瓶内待测。

7 试验报告
a. 试验报告应具有以下内容:
b. 样品名称或代号;
c. 样品的来源;
d. 试验依据的标准名称及编号;
e. 试验者;
f. 试验日期;
g. 其它必要的说明。


5
离子交换树脂含水量测定方法

GB/T5757—1986

本标准适用于在105℃-110℃下连续干燥而不发生化学变化的离子交换树脂含水量的测定。

1 原理
将吸收了平衡水量的离子交换树脂样品,用离心法除去颗粒外部的水分后,称取一定量的样品,用烘干法除去内部水分,由质量的减少计算树脂的含水量。

2 仪器和设备
2.1 玻璃离心过滤器:如下图。
2.2 电动离心沉淀机:0-4000r/min(可调);50mL离心管4支。
2.3 烘箱:最高温度200℃,温度波动±2℃。
2.4 架盘天平:感量0.1g,最大称量100g。
2.5 干燥器:ф250mm,内放硅胶干燥剂。
2.6 称量瓶:ф50mm×30mm。
2.7 秒表:分度0.02s。
2.8 分析天平:感量0.1mg。

3 试验步骤
3.1 取样按GB/T5475—1985《离子交换树脂取样方法》进行。
3.2 试样的预处理按GB/T5476—1996《离子交换树脂预处理方法》进行。需要将树脂转为某一型态时,可将相应的电解质溶液通过上述预处理后的样品。
3.3 将预处理好的树脂样品5-15mL装入离心过滤管内,在另一对称管内装入某一样品或水,然后放在架盘天平两边称量,用电导率(25℃)小于2μs/cm的少量纯水调整至两管质量相同。
3.4 将离心过滤管放至电动离心沉淀机内,在2000±200r/min下离心5min,用秒表计时。
3.5 取出离心过滤管,将样品倒入称量瓶内,盖严。
注:取出离心过滤管时,应防止分离出来的游离水重新进到树脂层中。
3.6 在已恒重的两个称量瓶中分别称入上述树脂样品0.9g-1.3g,准确至1mg。
3.7 将称量瓶敞盖放入烘箱中,在105℃±3℃下烘2h。
3.8 在烘箱中,将称量瓶盖严,取出置于干燥器内,冷却至室温(约20min-30min),在分析天平上称量。

4 结果计算
离子交换树脂含水量x(%)按下式计算:

式中:m1——空称量瓶的质量,g;
m2——烘干前称量瓶和树脂样品的质量,g;
m3——烘干后称量瓶和树脂样品的质量,g。
两次测定值之差不得大于0.29%,取两次测定值的算术平均值为测定结果。

5 允许差
同一实验室内允许差为0.29%;
不同实验室间允许差为1.09%。


6
树脂的污染及处理

一、悬浮物的污堵及处理
原水中的悬浮物会堵塞树脂层中的孔隙,从而增大其水流阻力,增大运行压降,也会覆盖在树脂颗粒的表面,因而降低树脂的工作交换容量。
为防止悬浮物的污堵,主要是加强对原水的预处理,以降低水中悬浮物的含量。为清除积聚在树脂层中的悬浮物,可采用增加反洗次数和时间或使用压缩空气擦洗等方法。
常用化学除盐系统对进水悬浮物的要求一般如下:

化学除盐单元

悬浮物(mg/L)

强酸阳(顺流再生)

<5

强酸阳(对流再生)

<2

强酸阳(浮床)

<2

强酸阳(顺流)→ 强酸阳(浮床)

<5

阳双层床、双室床

<2

阳双室浮床

<2

弱酸阳(顺流)→ 强酸阳(顺流)

<5

弱酸阳(顺流)→ 强酸阳(浮床)

<5

二、铁的污染及处理:
阳、阴树脂都可能发生铁的污染。被污染树脂的外观为深棕色,严重时可以变为黑色。一般情况下,每100g树脂中的含铁量超过150mg时,就应进行处理。铁的存在会加速阴树脂的降解。
阳树脂使用中,原水带入的铁离子,大部分以Fe2+存在,它们被树脂吸收以后,部分被氧化为Fe3+,再生时不能完全被H+交换出来,因而滞留于树脂中造成铁的污染。使用铁盐作为混凝剂时,部分矾花带入阳床,过滤作用使之积聚在树脂层表面,再生时,酸液溶解了矾花,使之成为Fe3+,部分被阳树脂所吸收,造成铁的污染。工业盐酸中的大量Fe3+,也会对树脂造成一定的铁污染。用于钠离子交换的阳树脂更容易受到铁的污染。
阴树脂中的铁含量有时会比阳树脂的大许多倍。阴树脂的铁主要来源于再生液。一般隔膜法生产的烧碱,其中含有0.01%-0.03%的Fe2O3,同时,还含有6-7mg/L的NaClO3。这样的烧碱在贮存和输送过程中与铁容器、管道(无防腐层)接触,将生成高铁酸盐(FeO4)。高铁酸盐随碱液进入阴床后,因pH值的降低,将发生分解,其反应式如下:

2FeO42- + 10H+ ——→ 2Fe3+ + 2/3O2 + 5H2O

Fe3+进一步生成Fe(OH)3,附着于阴树脂颗粒上,造成铁的污染。
树脂遭受铁的污染以后,在一般的再生过程中不能除去,必须用盐酸进行清洗。
常用的清洗方法是用10%HCl溶液,在进行此方法前,必须检查交换器设备的耐腐蚀性能,否则须用加抑制剂的盐酸。
将相当于树脂床体积0.5倍的10%HCl溶液从树脂床顶部进入(要考虑到树脂床内的残余存水,保持HCl溶液的浓度),从树脂床底部疏出相当于床内残 余存水的水量,将溶液搅拌,并与树脂接触12小时。疏出酸液,自上而下淋洗,然后反洗30分钟,除去疏松物质,再将树脂床再生后即可投运。
防止树脂发生铁污染的措施有:
1、减少阳床进水的含铁量。对含铁量高的地下水应先经过曝气处理及锰砂过滤除铁。对含铁量高的地表水或使用铁盐作为凝聚剂时,应添加碱性药剂,如Ca(OH)2或NaOH,提高水的pH值,防止铁离子带入阳床。
2、对输送高含铁量原水的管道及贮槽应考虑采取必要的防腐措施,以减少原水的铁含量。
3、阴床再生用烧碱的贮槽及输送管道应采取衬胶防腐,以减少碱再生液的含铁量。
4、当树脂的含铁量超过150g/gR时,应进行酸洗。

三、硫酸钙的污染及处理:
使用硫酸再生钙型阳树脂时,如果再生液的浓度过高,或流速过慢,在靠近树脂颗粒处,再生出的Ca2+与溶液中的SO42-浓度超过CaSO4的溶度积就会产生CaSO4沉淀,并附在树脂颗粒上,不仅再生后清洗困难,洗出液中总有硬度,影响离子交换反应的进行,运行中还会溶于出水中,使硬度含量增加,降低阳床的交换量。
硫酸钙在25°C时的溶度积为2000ppm,随温度增高溶解度减小,因此很难除去。
防止硫酸钙沉淀的措施,一是降低再生液硫酸的浓度,二是加快再生液的流速。也可采用分步再生方法,使再生液浓度逐步加大,再生流速逐步减慢。
一旦发现树脂中与硫酸钙沉淀时,目前最常用的方法是先以大量软水进行反洗,然后再用-10%HCl(3个床体积)以2.0L/h/L反复清洗,但须注意HCl及硫酸钙的溶解速度很慢,因此须多次清洗。
另一方法是用EDTA钠盐,但价格很高,且是放热反应,使用时须注意。

四、硅的污染及处理:
硅化合物污染发生在强碱阴离子交换器中,尤其是在强、弱型阴树脂联合应用的设备和系统中,其结果往往导致阴离子交换器除硅效率下降。
阴床的强碱树脂再生不当、失效的树脂未及时再生或阴树脂再生不彻底,会发生硅酸在树脂颗粒内部聚合的现象,而难以再生,这种现象是硅在树脂内的积聚,不 属于硅的污染。硅的污染是指再生过程中,已从树脂上再生出来的硅酸盐,由于再生液pH值的降低,大量的硅酸以胶体状态析出,严重时再生液可以变成胶冻状, 被覆于树脂表面,影响树脂的交换容量,并造成出水SiO2含量增高。
顺流再生固定床和移动床一般不会发生硅的污染。硅的污染主要发生于原水中硅的含量与总阴离子含量(不包括碱度)比值高的对流再生单床,尤其是在弱、强型阴离子交换树脂联合应用的设备和系统中。
清洗二氧化硅污染可用烧碱,建议用量为130-160g/L,浓度为2.0%,处理温度为50°C-60°C。树脂床须先浸泡,如条件不允许,可将溶液以2个床体积/小时的流速通过树脂床,这方法的关键是保持较高温度及接触时间。
防止硅污染的主要措施有:
1、阴床失效后要及时再生,不在失效态备用。
2、再生碱液应加热,Ⅰ型树脂不高于40°C,Ⅱ型树脂不高于35°C。
3、降低再生液的浓度至2%NaOH。
4、再生液的流速不低于5m/h,但应保持进再生液的时间不少于30min。
5、联合应用系统中要从设计上保证弱型树脂先失效。

五、油的污染及处理:
  矿物油对树脂的污染主要是吸附于骨架上或被覆于树脂颗粒的表面,造成树脂微孔的污堵,致使树脂交换容量降低,周期制水量明显减少。
矿物油的来源有:
■ 渗入地下的矿物油随原水带入交换器。
■ 使用蒸汽混合加热原水时,油随蒸汽带入原水。
■ 燃油锅炉使用蒸汽雾化燃油,当油压高于蒸汽压力时,重油(或原油)漏入蒸汽,经过凝气器进入凝结水除盐系统。
■ 炼油厂或化工厂生产流程中的油通过蒸汽系统漏入原水。化学除盐设备进水中含油量为0.5mg/L时,几个月内即可出现树脂被油污染的现象。
处理油污染树脂的方法:
首先,应迅速查明油的来源,排除故障,防止油的继续漏入。必要时,应清理设备内积存的油污。轻微污染的树脂不一定需要处理,可以在多次再生中逐渐恢复其交换容量。严重污染的树脂,应通过小型试验,选择适当的处理方法。
1、用NaOH溶液循环清洗
使用38-40°C的8%-9%NaOH溶液,从碱箱(约10m3)经过阴床、阳床后,再回到碱箱循环清洗(具体时间由小型试验确定),并补充NaOH溶液,保持溶液浓度,利用NaOH对矿物油的乳化作用,清除油污。
2、用溶剂清洗
可以使用石油醚或200号溶剂汽油对树脂进行清洗,清洗过程中要严密防火。
3、使用溶剂与表面活性剂联合清洗
使用树脂体积20%的200号溶剂汽油和TX-10(非离子型,全名为聚氯乙烯辛烷基苯酚)20kg,加入交换器后,保持温度45-50°C,用无油压 缩空气搅拌并擦洗,30min后再加入200kgTX-10表面活性剂,继续搅拌,使油乳化。最后,从交换器顶部进水,将乳化液从底部排出,至冲洗干净为 止。

六、有机物的污染及处理:
  有机物对阴树脂的污染原因及处理方法都比较复杂,将另行说明。


7
出水质量恶化

出水质量是衡量化学除盐设备运行工况的主要指标。出水质量恶化是指运行周期中间,除盐水的电导率和SiO2含量明显高于调试结果,不论其水质指标是否合格,都可以认为是发生了出水质量恶化现象。
当除盐水的电导率或SiO2含量明显增高时,为确定发生问题的原因,需要测定除盐水的pH值。根据测定结果,判断除盐设备出水质量恶化故障,查找发生问题的原因。
下列的情况在除盐系统中是比较典型的:
1、弱酸阳床:
(1)出水碱度漏泄比规定值为高。这是由于再生不合适,再生剂应为理论交换容量的110%,如采用串联再生,则须检查再生强酸树脂后的酸量是否足够再生弱酸树脂。
(2)出水硬度高于规定值。如用硫酸再生,可能会有硫酸钙沉淀,这时硫酸钙渐渐水解,将产生钙硬,因此,当用硫酸再生时,须采用分步再生方法,并实行先低浓度、高流速,后高浓度、低流速的方法再生。如串联再生,则应检查强酸阳树脂的再生废液是否已稀释。

  2、强酸阳床:
  (1)出水钠漏泄高于规定值。这不太发生,如有,则应检查再生步骤,有时阳床用混床再生废液串联再生,这时须注意混床废液最初的15-30%须弃去,否则将有钠离子进入阳床,此外,混床废液中的酸量须检查是否足够。
(2)出水漏硬度。如果用硫酸再生,那时由于硫酸钙沉淀,应检查酸的浓度(从系统中取样分析)及再生流速,如水中钙离子量超过总离子的50%,须采用分级再生,最初浓度应不大于2%,流速为12升/小时/升树脂。

  3、弱碱阴床:
  (1)出水矿物酸漏泄增加。这问题可分为矿物酸漏泄真实增加和矿物酸漏泄表象增加。
a. 矿物酸漏泄真实增加。一般出水电导率应为50μs/cm或以下,如再生不足,电导率曲线将缓慢上升,那就是出水酸度将逐步上升。
建议同时测定pH值,以校核矿物酸漏泄是否真实增加,而不是表象增加。
最后,如果弱碱树脂是串联再生,那么再生强碱树脂后的碱液是否足够,它应为理论交换容量的120-130%。
b. 矿物酸漏泄表象增加。弱碱树脂是作为矿物酸的中和剂,真正的弱碱树脂(有90%以上的弱碱基)不会分解中性盐如氯化钠或硫酸钠,因此阳床必须运行正常,其 出水钠漏泄很小,并须维持一定的pH。如pH大于3.5,那就是阳床未能完全去除阳离子,这些中性盐流经弱碱阴床将增加电导率。
(2)高pH、漏钠、电导率增高。这是由于阴树脂床中混入了阳树脂,在碱再生时,阳树脂呈钠型,在运行中逐渐放钠。阴床出水有钠,是由于强酸阳床出水漏钠。
(3)二氧化硅问题。如阴床串联再生,尤为容易产生此问题,强碱阴床再生后的碱液中含有二氧化硅,经弱碱阴床后,又进行了碱性中和,而使pH下降,当达到碱液中二氧化硅等电点时,二氧化硅就在树脂上沉淀下来。在以后运行中,由于水解而使出水中二氧化硅增加。
解决这问题的方法是,再生强碱阴床后的碱液先排除15-30%,或将碱液稀释至2%,还须保证NaOH有理论工作交换容量的130%。

  4、强碱阴床:
  不论是Ⅰ型还是Ⅱ型,关键问题是二氧化硅漏泄,与强酸阳树脂及弱碱阴树脂不同,强碱阴树脂的热稳定性较低,只有60℃及40℃,否则树脂会发生降解。
如因热及氧化作用,使强碱基团损失,这样就造成二氧化硅漏泄,因此,在运行中须保持在温度极限范围内。此外,强碱阴树脂易受有机物污染,产生如下后果:
(1)pH降低;(2)电导率增高;(3)二氧化硅漏泄增加;(4)淋洗水量增加。
其中:(1)和(2)是由于在树脂上的有机物再生后部分水解所造成的,(3)是由于污染物的位阻效应使NaOH再生不完全,(4)是由于污染物的两性作用。

  5、混床系统
(1)淋洗水量增大。混床系统淋洗水量增大是由于树脂的交叉污染,如NaOH与混入阴床的强酸阳树脂作用,将钠盐存在于阳树脂上,或HCl(H2SO4)与混入阳床的强碱阴树脂作用,将氯根(硫酸根)存在于阴树脂上。
交叉污染主要是由于树脂在分界面上的混杂。在这情况下,钠及氯根(硫酸根)漏泄增大,使淋洗时间增加。经验显示,虽然冲洗钠漏泄很麻烦,但其影响不及硫酸根离子漏泄严重,后者在凝结水净化系统中的后果尤为突出,常用的方法是将出水进行再循环,这方法是很耗时的。
采用三层混床树脂,可减少再生剂对阳、阴树脂的交叉污染,使混床淋洗水量过大的弊病得到改善。
(2)出水质量下降。混床系统要求阳、阴树脂须充分混合。如果阳、阴树脂混合不好,在很多部位还是呈分层状态,出水质量就会降低。一个重要的事项是,在 空气混合时,树脂床层上部的水层必须小于5厘米,如果树脂床不先疏水至上述水位,那么不管空气搅拌多么激烈,当搅拌停止时,树脂就按密度差别重力沉降,使 阳、阴树脂分层,而产生上述问题。
建议采用反常规混床树脂,它既能使阳、阴树脂在反洗时彻底分层,又能在再生后均匀混合,解决了混床树脂的混合问题。



8
树脂的氧化和降解

树脂的化学稳定性可以用其耐受氧化剂作用的能力表示。阳树脂被氧化后主要发生骨架的断链,而阴树脂则主要表现为季胺基团的降解。
1、阳树脂的氧化:
阳树脂被氧化后主要表现为骨架断链,生成低分子的磺酸化合物以及羧酸基团。其反应为:

阳树脂遇到的氧化剂主要是游离氯与水反应生成的氧,其反应如下:

过去原水中的游离氯主要来自生活用水的消毒。近年来,由于天然水中有机物含量和细菌的增多,在混凝、澄清之前也需加氯,以达到灭菌和降低COD 的作用,因此,必须注意游离氯对阳树脂的损害。再生过程中,如果使用质量差的工业盐酸或副产品盐酸,其中含有氧化剂也会对阳树脂造成损害。一般要求进入化 学除盐设备的原水中,游离氯的含量应小于0.1mg/L。

2、防止阳树脂被氧化的方法:
(1)活性炭过滤。防止阳树脂被氧化的常用方法是通过活性炭过滤。活性炭脱除游离氯的原理,不单纯是吸附作用,而是一种表面上的化学反应。当活性炭表面吸附的氯达到一定浓度时,就会发生下列反应:

式中:C*——活性炭;
CO*——活性炭表面上生成的氧化物。
如果有充分的氯参加反应,CO*可以变为CO或CO2逸出,留下的活性炭可以继续吸附游离氯。为此,为了脱除游离氯,可以使用较高的过滤流速(约50m/h)。同时,活性炭吸着游离氯时具有很高的吸着容量(每克活性炭约可吸着6.5mg以上的Cl2)。
用活性炭去除水中的游离氯可以使用下列经验公式进行计算:

式中:CO——进水游离氯的含量,mg/L;
C——出水游离氯的含量,mg/L;
L——活性炭层高,m;
V——过滤流速,m/h。
考虑到HOCl的反应速度较慢,将上述公式修正为:

制造活性炭的原材料一般对脱氯效率无影响。
水中有胶体或高浓度的有机物存在,将会严重缩短活性炭作为脱氯剂的寿命。
活性炭过滤器仅用于脱除游离氯时,可以用漏Cl2量≥0.1mg/L作为终点。活性炭的寿命是很长的,例如:在活性炭层高0.76m,过滤速度6.1m/h的条件下,对游离氯含量2mg/L的水进行脱氯,其使用寿命约为6年左右。
(2)选用高交联度的阳树脂。随着树脂交联度的增大,其抗氧化性能增强。
阳树脂被氧化后,由于断链使骨架疏松,体积膨胀,含水量增大。大孔型阳树脂因为交联度高,具有较好的抗氧化性能。但是,随着树脂交联度的增加,其交换容量降低,价格增高,因此,在实际中很少使用。

  3、强碱阴树脂的降解:
  强碱阴树脂遭受氧化后,主要表现为季胺基团的逐渐降解,而不会发生骨架 的断链。强碱阴树脂的降解主要是季胺基团按顺序分解为叔、仲、伯胺,甚至非碱性物质。在化学除盐工艺中,其主要表现为中性盐分解容量,特别是硅交换容量的 降低。强碱阴树脂在运行中遇到的氧化剂主要是水中溶解氧,再生过程中遇到的氧化剂主要是碱中所含的ClO3-和FeO42-
季胺基团受氧化的反应,如下式所示:

强碱Ⅰ型阴树脂的抗氧化性能优于强碱Ⅱ型。强碱阴树脂在长期使用中,其交换容量会逐渐降低。

  4、防止强碱阴树脂降解的方法
  (1)使用真空除气器,减少阴床进水中的含氧量。
(2)做好碱液贮存及输送设备的防腐工作,降低再生液的含铁量。
(3)采用隔膜法制造的纯碱,降低碱液中NaClO3的含量(可降低至6-7mg/L)。
(4)控制再生液温度:Ⅰ型阴树脂不得高于40℃;Ⅱ型阴树脂不得高于35℃。
(5)树脂应以氯型在低温下保存。


9

树脂颗粒的破碎

目前化学除盐使用的离子交换树脂,其颗粒都是完整的球体。在使用过程中,少量的树脂因磨损、涨缩等原因发生破碎现象是正常的。这些破碎的树脂积 在树脂层中会造成水流阻力的增大,影响设备的正常运行。为此,应在离子交换器的反洗过程中将它们除去。在正常情况下,树脂的年损耗率如表1所示,当树脂颗 粒的破碎率和损耗率明显超过正常值时,可认为该树脂发生了破损问题。

表1离子交换树脂的年损耗率

名树脂称

年损耗率(%)

固定床001×7

<5

固定床201×7

<10

移动床

<10-15

在树脂的贮存、运输和使用过程中,都可能造成树脂颗粒的破碎。常见的原因有:
1. 制造质量差。树脂在制造过程中,由于工艺参数维持不当,会造成部分或大量树脂颗粒发生裂球或破碎现象,表现为树脂颗粒的压碎强度低和磨后圆球率低。
2. 冰冻。树脂颗粒内部含有大量的水分,在零度以下温度贮存或运输时,这些水分会结冰,体积膨胀,造成树脂颗粒的崩裂。冻过的树脂在显微镜下可见大量裂缝,使用后短期内就会出现严重的破碎现象。为了防止树脂受冻,应将树脂保存在5-40℃下,避开在冰冻期运输。
3. 干燥。树脂颗粒暴露在空气中,会逐渐失去其内部水分,树脂颗粒收缩变小。干树脂浸在水中时,它会迅速吸收水分,粒径胀大,从而造成树脂的裂球和破碎。为 此,在树脂的贮存和运输过程中要保持密封,防止干燥。对已经风干的树脂,应先将它浸入饱和食盐水中,利用溶液中高浓度的离子,抑制树脂颗粒的膨胀,再逐渐 用水稀释,以减少树脂的裂球和破碎。
4. 渗透压的影响。正常运行状态下的树脂,在失效过程中,树脂颗粒会产生膨胀或收缩的内应力。树脂在长期的使用中,多次反复膨胀和收缩,是造成树脂颗粒发生裂 纹或破碎的主要原因。树脂膨胀与收缩的速度取决于树脂转型的速度,而转型的速度又取决于进水的盐类浓度和流速。凝胶型树脂用作天然水化学除盐时,最高流速 一般不超过40m/h,用作凝结水除盐时,最高流速一般不超过60m/h。大孔型树脂因骨架结构牢固,孔隙率较大,能承受较大的转型速度,凝结水的流速可 高达100m/h。
表2是树脂渗透压实验的结果,由此可以看出树脂反复用酸、碱转型,强化了渗透压变化对树脂裂球的影响,同时,也可看出反复 转型是树脂破碎的主要原因。树脂在再生过程中,因溶液浓度较高,离子的压力使树脂颗粒的体积变化减少,渗透压的影响降低,因此一般不会造成树脂颗粒的破 碎。

表2树脂反复转型后的裂球率(%)

树脂类型

凝胶型树脂

大孔型树脂

新树脂

6.9

0

用酸、碱反复转型100次后的树脂

80.5

0.3


我要评论
  • 匿名发表
  • [添加到收藏夹]
  • 发表评论:(匿名发表无需登录,已登录用户可直接发表。) 登录状态:未登录
最新评论
所有评论[0]
    暂无已审核评论!
广告

甄长红  版权所有 

copyright 1991-2019 青果园电厂化学资料网 ( www.qgyhx.cn ) All rights reserved 陇ICP备09001450号

申请链接  广告服务  联系我们  关于我们  版权声明  在线留言

网站由中网提供技术支持