会员投稿

网站管理

设为首页

加入收藏

 

当前位置:首页 > 汽机专业 > 详细内容
汽轮机技术问答(1)
发布时间:2009/6/9  阅读次数:5633  字体大小: 【】 【】【
本广告位全面优惠招商!欢迎大家投放广告!广告投放联系方式

  采用喷嘴调节的汽轮机进汽量减小时,各类级的理想焓降如何变化?反动度、速度比、级效率如何变化?

解答:当汽轮机的工况变化时,按各级在工况变化时的特点通常级分为调节级、中间级和末级组三类。

       1)中间级:在工况变化时,压力比不变是中间级的特点。汽轮机级的理想焓降是级前温度和级的压力比的函数,在工况变化范围不大时,中间级的级前蒸汽温度基本不变。此时级内蒸汽的理想焓降不变,级的速度比和反动度也不变,故级效率不变。随着工况变化范围增大,压力最低的中间级前蒸汽温度开始变化,并逐渐向前推移。当流量减小,级前蒸汽温度降低,中间级的理想焓降减小,其速度比和反动度相应增大。由于设计工况级的速度比为最佳值,级内效率最高,当速度比偏离最佳值时,级内效率降低。而且速度比偏离最佳值愈远,级内效率愈低。

2)末级组:其特点是级前蒸汽压力与其流量的关系不能简化为正比关系,且级组内级数较少。由于在工况变化流量下降时,汽轮机的排汽压力变化不大,级前压力减小较多。且变工况前级组前后的压力差越大,级前压力降低的多,级后压力降低的少。此时级的压力比增大,级内理想焓降减小,而且末级的压力比和理想焓降变化最大。级的速度比和反动度随理想焓降的减小而增大,速度比偏离最佳值,级效率相应降低。

3)调节级:调节级前后压力比随流量的改变而改变,其理想焓降亦随之变化。当汽轮机流量减小时,调节级的压力比逐渐减小,调节级焓降逐渐增大。在第一调节阀全开而第二调节阀刚要开启时,级的压力比最小,故此时调节级理想焓降达到最大值。级的理想焓降增大,其速度比和反动度随之减小,速度比偏离最佳值,级效率相应降低。

主蒸汽压力变化,对机组安全经济运行有何影响?

解答:在初压变化时,若保持调节阀开度不变,此时除少数低压级之外,绝大多数级内蒸汽的理想焓降不变,故汽轮机的效率基本保持不变,但其进汽量将随之改变。对于凝汽式机组或某一级叶栅为临界状态的机组,其进汽量与初压的变化成正比,由于此时汽轮机内蒸汽的理想焓降随初压升高而增大,机组功率的相对变化大于机组进汽量的相对变化。对于不同背压的级组,背压越高,初压改变对功率的影响越大。

当主蒸汽温度不变,主蒸汽压力升高时,蒸汽的初焓减小;此时进汽流量增加,回热抽汽压力升高,给水温度随之升高,给水在锅炉中的焓升减小,一公斤蒸汽在锅炉内的吸热量减少。此时进汽量虽增大,但由于进汽量的相对变化小于机组功率的相对变化,故热耗率相应减小,经济性提高,反之亦然。

采用喷嘴调节的机组,初压改变时保持功率不变。当初压增加时,一个调节阀关小,其节流损失增大,故汽轮机的内效率略有降低。虽然初压升高使循环效率增高,但经济性不如调节阀开度不变的工况。

采用节流调节的机组,若保持功率不变,初压升高时,所有调节阀的开度相应减小,在相同条件下,进汽节流损失大于喷嘴调节。初压升高使循环效率增大的经济效益,几乎全部被进汽节流损失相抵消。

初压升高时,所有承压部件受力增大,尤其是主蒸汽管道、主汽门、调节阀、喷嘴室、汽缸等承压部件,其内部应力将增大。初压升高时若初温保持不变,使在湿蒸汽区工作的级湿度增大,末级叶片的工作条件恶化,加剧其叶片的侵蚀,并使汽轮机的相对内效率降低。若初压升高过多,而保持调节阀开度不变,由于此时流量增加,轴向推力增大,并使末级组蒸汽的理想焓降增大,会导致叶片过负荷。此时调节级汽室压力升高,使汽缸、法兰和螺栓受力过大,高压级隔板前后压差增大。因此对机组初压和调节级汽室压力的允许上限值有严格的限制。

当初压降低时,要保持汽轮机的功率不变,则要开大调节阀,增加进汽量。此时各压力级蒸汽的流量和理想焓降都相应增大,则蒸汽对动叶片的作用力增加,会导致叶片过负荷,并使机组的轴向推力相应增大。现代汽轮机在设计工况下,进汽调节阀的富余开度不大,保证在其全开时,动叶片的弯曲应力和轴向推力不超限。

  主蒸汽和再热蒸汽温度变化,对机组安全经济运行有何影响?

解答:1)初温变化对安全经济运行的影响:

汽轮机的初温升高,蒸汽在锅炉内的平均吸热温度提高,循环效率提高,热耗率降低。另外,由于初温升高,凝汽式汽轮机的排汽湿度减小,其内效率也相应提高。循环效率和汽轮机的效率提高,运行经济性相应提高。反之,汽轮机的初温降低,运行经济性相应降低。

       由于初温的变化,汽轮机的进汽量和进汽比焓值均变化,汽轮机的功率也相应变化。在汽轮机的进汽压力和调节阀开度不变时,进汽量与主蒸汽绝对温度的二次方根成反比。对于非再热机组,在进排汽压力不变时,其理想焓降与主蒸汽绝对温度成正比。汽轮机功率的相对变化与主蒸汽温度的的二次方根成正比。对于再热机组,由于假定主蒸汽压力和再热蒸汽温度不变,此时再热蒸汽压力因流量减少而降低,主蒸汽温度变化时对机组功率的影响小于非再热机组,但其功率的变化仍与主蒸汽温度的的二次方根成比例。

汽轮机的进汽部分和高压部分与高温蒸汽直接接触,蒸汽初温升高时,金属材料的温度升高,机械强度降低,蠕变速度加快,许用应力下降,从而使机组的使用寿命缩短。

在调节阀开度不变,主蒸汽温度降低时,汽轮机功率相应减小。要保持机组功率不变,要开大调节阀,进一步增加进汽量。此时对于低压级、特别是末级,流量和焓降同时增大,导致动叶栅上蒸汽的作用力增加,其弯曲应力可能超过允许值,且转子的轴向推力相应增大。另外,主蒸汽温度的降低,导致低压级的湿度增大,使湿气损失增大,对动叶片的冲蚀作用加剧。若蒸汽初温突然大幅度降低,则可能产生水冲击,引起机组出现事故。

2)再热蒸汽温度变化对机组安全经济运行的影响

再热机组的再热蒸汽温度变化,对机组安全经济运行的影响与主蒸汽温度变化的影响相似。所不同的是再热蒸汽温度变化时,仅对中、低压缸的理想焓降和效率产生影响,而对高压缸的影响极小。只是再热蒸汽温度升高时,其比容相应增大,容积流量增加,再热器内流动阻力增大,使高压缸排汽压力略有增加。因此再热蒸汽温度变化1,对机组经济性的影响小于主蒸汽温度变化1℃时产生的影响。

汽压力变化,对机组安全经济运行有何影响?

解答:在进汽参数和进汽量不变的条件下,排汽压力变化对机组经济性的影响分为:末级未达临界、达临界和排汽压力低于末级动叶栅的极限背压三种情况。

在末级未达临界的情况下,排汽压力变化影响到末级组各级的功率,使机组功率变化。排汽压力升高,末级组的理想焓降减小;此时排汽比容和湿度相应减小,使末级组的湿汽损失和末级余速损失减小,末级组的效率有所提高;另外,排汽压力升高,凝汽器内凝结水温度升高,凝结水在低压加热器内的温升减小,低压回热抽汽量相应减少,末级组各级的流量随之增大。由于在正常情况下,排汽压力变化幅度不大,末级组各级的流量增加和效率提高不足以弥补理想焓降减小的影响,故排汽压力升高,末级组的功率相应减小,且呈线性关系;反之亦然。

随着排汽压力逐渐降低,若末级组出现临界状态,则首先发生在末级动叶栅。当末级动叶栅达临界状态时,排汽压力降低,末级组中各级级前参数保持不变,蒸汽在末级动叶栅的斜切部分内由临界压力膨胀到排汽压力。由于蒸汽在动叶栅斜切部分内膨胀,动叶的速度系数相应减小,动叶损失随之增加,故级效率降低。而且排汽压力愈低,在动叶栅斜切部分内的膨胀量愈大,级效率也愈低。其次,随着排汽压力的降低,凝汽器内凝结水温度相应降低,而回热抽汽压力不变,因此凝结水在最末一级低压加热器内的焓升增大,最末一段的回热抽汽量相应增大,末级的蒸汽流量随之减少。由于末级效率进一步降低,其蒸汽流量随之减少,使得排汽压力降低时功率的增加量相应减小,功率随排汽压力的变化不再呈线性关系。

当排汽压力继续降低至动叶栅斜切部分膨胀的极限压力后,排汽压力继续降低,由极限压力降到排汽压力的膨胀,将在动叶栅后无序进行,损失增加,末级的有效焓降不再增加。而凝结水温度却继续降低,最后一段低压抽汽量继续增加,从而使末级的蒸汽流量进一步减少。此时末级功率不但不再增加,反而减少,对经济性产生负效应,即随着排汽压力的降低,热耗率相应增加。

对于具有回热系统的机组,在其排汽压力变化时,蒸汽在锅炉中的吸热量不变,其热耗率随功率的增加而降低,随功率的减小而增加。其变化幅度与功率的变化幅度一致。

排汽压力的变化不仅引起机组经济性的改变,同时也将影响机组的安全性。若排汽压力升高较多,使排汽温度大幅度升高,导致排汽室的膨胀量过分增大。若低压轴承座与排汽缸连为一体,将使低压转子的中心线抬高,破坏转子中心线的自然垂弧,从而引起机组强烈振动,若采用独立轴承座,则排汽室抬起影响汽封径向间隙,可能使动、静部分发生摩擦。此外排汽温度大幅度升高,还将导致凝汽器内铜管的胀口松动,造成冷却水漏入汽侧空间,凝结水的水质恶化,影响汽轮机运行的安全。排汽压力升高时,若保持机组功率不变,要相应增大汽轮机的进汽量,使轴向推力增大。

  

调节级和压力级各自有何特点?

解答:1)调节级的特点:在工况变化时,通流面积呈阶梯形变化,其理想焓降变化最大。为使其在工况变化时效率相对变化小一些,应尽可能增大调节级的理想焓降。通常其平均直径比高压非调节级大,同时速度比小于最佳值。调节级的效率相对比较低,其理想焓降的取值需考虑汽轮机的效率和整体结构。为了提高调节级的级效率,其应具有一定的反动度。考虑到调节级为部分进汽的级,且叶片较短,为了减小漏汽损失,一般反动度值不宜过大。

2)压力级的特点:压力级一般是指调节级后各非调节级。根据蒸汽容积流量的大小和压力的高低,将压力级分为三种不同的级组:高压级组、中压级组和低压级组。

A 高压级组:高压级组中蒸汽容积流量不大,其变化相对较小。高压级组的通流部分叶栅高度一般不大,平均直径和叶栅高度变化比较平缓,其各级的能量损失中叶栅端部损失、级内间隙漏汽损失所占比例较大。当蒸汽容积流量较小,可采用部分进汽的措施来提高叶片高度。对于大容量汽轮机,高压级组通流部分叶栅高度虽较大,但为了保证必要的刚度和强度,往往采用较厚的高压隔板和较宽的喷嘴,这将导致喷嘴相对高度降低,端部损失较大。

B.中压级组:中压级组介与高压级组与低压级组之间,随着蒸汽的不断膨胀,其容积流量已较大。中压级组一般工作在过热蒸汽区,无湿汽损失,同时各级的端部损失和漏汽损失相对较小,级组中各级的级效率较高。

           C.低压级组:低压级组指包括最末级在内的几个压力级,其蒸汽压力低,容积流量大,一般工作于湿蒸汽区。由于低压级组蒸汽容积流量急剧增大,导致低压级组的叶栅高度和平均直径相应增大。一般加大直径可限制叶栅高度过分增大,又可增加级的理想焓降,减少级数,但末级的余速损失也会相应增大。低压级由于平均直径增加,叶栅高度增大,圆周速度相应增加,使离心力增大。在目前的技术条件下,末级叶片长度可达1000mm左右,末级的平均直径可达2500mm左右。单排汽口的汽轮机,其最大额定功率可达150MW左右。因此大功率汽轮机的低压部分必须进行分流。为减少湿汽损失,降低湿汽对叶片的冲蚀,限制汽轮机排汽的湿度应不超过1213%,并设置去湿装置和采用去湿措施来降低蒸汽湿度对叶栅的冲蚀。

我要评论
  • 匿名发表
  • [添加到收藏夹]
  • 发表评论:(匿名发表无需登录,已登录用户可直接发表。) 登录状态:未登录
最新评论
所有评论[0]
    暂无已审核评论!
广告

甄长红  版权所有 

copyright 1991-2019 青果园电厂化学资料网 ( www.qgyhx.cn ) All rights reserved 陇ICP备09001450号

申请链接  广告服务  联系我们  关于我们  版权声明  在线留言

网站由中网提供技术支持