甄长红 版权所有
|
copyright 1991-2019 青果园电厂化学资料网 ( www.qgyhx.cn ) All rights reserved 陇ICP备09001450号 |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 引言 二噁英类(Dioxins)这个化学名词现在已经成为环境界和国际媒体关注的热点。这类毒性很大的有机化合物最初是在化工产品的副产物中发现的,其中最著名的是美国曾在越南战争中大量使用的被称为橙剂(Agent Orange)的脱叶剂,许多从越南战场上回国的美国飞行员和士兵认为他们的健康问题是由于接触脱叶剂的缘故,这导致了美国历史上最大规模的战争环境健康影响调查,确认橙剂中含有的二噁英类杂质具有潜在的急性、亚急性和长期毒性,最终建立了越战老兵基金为受到二噁英类污染危害的越战士兵提供医疗资助。而对越南饱受脱叶剂危害地区的事后调查,更发现大量流产、死胎、新生儿畸形等案例。 1968年,日本福冈和长崎地区发生米糠油中毒事件,出现大量“油症”皮肤病患者,后来发现其原因是人们吃了被多氯联苯(PCBs)和二噁英类沾污的食用油。无独有偶,11年后在台湾再次发生2000人的米糠油中毒事件,原因是在米糠油脱色除味处理中采用日本生产的PCBs混合液作为导热剂,因渗漏使米糠油受到PCBs和二噁英类污染,在油症患者的组织和血液样品中检出了高浓度的二噁英类。 1976年,意大利Seveso一家化学工厂发生爆炸事故,使得数以千计的居民暴露在高剂量的二噁英类之中,人体组织中的二噁英类含量高出正常水平(5~6×10-12)的10000倍,居民暴露后的主要健康效应是出现氯痤疮(chloracne)。 1981年2月5日,美国纽约州有一座18层的办公大楼发生变压器火灾,由于该变压器的冷却剂中含有多氯联苯(PCBs)类物质,有关当局组织了大量的人力、物力对大楼进行封锁和清理,历时1年,耗费2千万美元仍然没能达到办公使用要求。 1997年6月16日,韩国政府强制关闭3家国有大型垃圾焚烧处理厂,理由是它们的二噁英类排放严重超标。韩国环境部要求到2000年所有垃圾焚烧厂的二噁英类排放必须达标。 1999年,比利时“污染鸡”事件极大地冲击了比利时、德国、法国、荷兰等国的畜牧业市场和食品出口贸易,引起消费者的极大恐慌,甚至引发了比利时政局的动荡。后来的大规模检测和调查证实,比利时的动物饲料在生产中使用了含二噁英类的脂肪原料。这次二噁英类污染事件造成的直接经济损失高达数十亿欧元,间接损失更是无法估计,在世界范围内造成了强烈反响。我国也受到这次事件的波及,新闻媒体有很多报道,提高了公众对环境二噁英类的关注程度。我国环境界成立了“二噁英类专家委员会”,国家也制定了废物焚烧的二噁英类排放标准。国家环境保护总局在国家环境分析测试中心建立了环境二噁英类分析实验室,已经开始在全国范围内开展垃圾焚烧的二噁英类排放源调查活动。 2 二噁英类结构 二噁英类是由2个或1个氧原子联接2个被氯取代的苯环组成的三环芳香族有机化合物,包括多氯二苯并二噁英(Polychlorinated dibenzo-p-dioxins, 简称PCDDs)和多氯二苯并呋喃(Polychlorinated dibenzo-p-furans, 简称PCDFs),共有210种同类物,统称为二噁英类。二噁英类的分子结构如图1所示,每个苯环上可以取代1~4个氯原子,存在众多的异构体/同类物,其中PCDDs有75种异构体/同类物,PCDFs有135种异构体/同类物(见表1)。 ![]() 图1 二噁英类的分子结构 表1 PCDDs和PCDFs的异构体数
3 二噁英类理化性质 二噁英类是一类非常稳定的亲脂性固体化合物,其熔点较高,分解温度大于700℃,极难溶于水,可溶于大部分有机溶剂(参见表2),所以二噁英类容易在生物体内积累。自然界的微生物降解、水解和光解作用对二噁英类的分子结构影响较小,难以自然降解。 表2 二噁英类的理化性质
4 二噁英类毒性 二噁英类是一类剧毒物质,其急性毒性相当于氰化钾的1000倍。大量的动物实验表明很低浓度的二噁英类就对动物表现出致死效应。从职业暴露和工业事故受害者身上已得到一些二噁英类对人体毒性数据及临床表现,暴露在含有PCDDs和PCDFs的环境中,可引起皮肤痤疮、头痛、失聪、忧郁、失眠等症,并可能导致染色体损伤、心力衰竭、癌症等。其最大危险是具有不可逆的致畸、致癌、致突变(“三致”)毒性。 二噁英类有多种异构体,各异构体的毒性与所含氯原子的数量及氯原子在苯环上取代位置有很大关系。含有1~3个氯原子的异构体被认为无明显毒性;含4~8个氯原子的化合物有毒,其中毒性最强的是2, 3, 7, 8-四氯二苯并二噁英类(2, 3, 7, 8-TCDD),动物实验表明2, 3, 7, 8-TCDD对天竺鼠(guinea g/kg,是迄今为止发现过的最具致癌潜力的物质,所以有人把2, 3, 7,mpig)的半致死剂量(LD50)为1 8-TCDD称作为“世纪之毒”。但是,若不仅2, 3, 7, 8位置上含有4 个氯原子,其他4个取代位置上增加氯原子数,则其毒性将会有所减弱。由于环境二噁英类主要以混合物形式存在,在对二噁英类的毒性进行评价时,国际上常把不同组分折算成相当于2, 3, 7, 8-TCDD的量来表示,称为毒性当量(Toxic Equivalent Quangtity,简称TEQ)。为此引入毒性当量因子(Toxic Equivalency Factor,简称TEF)的概念,即将某PCDDs/PCDFs的毒性与2, 3, 7, 8-TCDD的毒性相比得到的系数。样品中某PCDDs或PCDFs的浓度与其毒性当量因子TEF的乘积,即为其毒性当量TEQ。而样品的毒性大小就等于样品中所有TEQ的总和。表3列出了GB18485-2001规定的二噁英类毒性当量因子TEF。 表3 GB18485规定的二噁英类毒性当量因子(TEF)
5 环境二噁英类来源 二噁英类基本上不会天然生成,也没有人为的工业生产活动。除了科学工作者以科研为目的而进行少量合成之外,环境中的二噁英类来源大致有以下几种: 1. 城市垃圾和工业固体废物焚烧时生成二噁英类。调查表明,城市固体废物以及含氯的有机化合物如多氯联苯、五氯酚、PVC等焚烧时排出的烟尘中含有PCDDs和PCDFs,其产生机制目前尚不清楚,一般认为它是由于含氯有机物不完全燃烧通过复杂热反应形成的。例如,PCBs广泛使用于变压器、电容器和油墨中,这类物品的燃烧,特别是油墨和含油墨的物品混入生活垃圾进入焚烧厂,它们在不完全燃烧的条件下,将会产生PCDFs。五氯酚是一种木材防腐剂,经防腐处理的木材及其木屑、下脚料等,在加热制成合成板或焚烧时,也会产生PCDDs和PCDFs。聚氯乙烯(PVC)被广泛用于电缆线外覆及家用水管等,遇火燃烧亦会产生PCDDs和PCDFs。也有不少科学研究人员认为任何燃烧过程都可能或多或少地产生二噁英类。 2. 含氯化学品及农药生产过程可能伴随产生PCDDs和PCDFs。其生成条件为温度大于145℃,有邻卤酚类物质,碱性环境或有游离氯存在。苯氧乙酸类除草剂、五氯酚木材防腐剂等的生产过程常伴有二噁英类产生。目前,大多数发达国家已经开始削减此类化学品的生成和使用,如美国已经全面禁止2, 4, 5-三氯苯氧乙酸的使用和限制木材防腐剂及六氯苯的生成和使用,以减少二噁英类的环境污染。 3. 在纸浆和造纸工业的氯气漂白过程中也可以产生二噁英类,并随废水或废气排放出来。 以上三种过程均可导致环境二噁英类污染,但其贡献大小不同。从日本1990年的调查结果来看,垃圾焚烧排放的二噁英类为3100~7400g/a,占总排放量(3940~8450g/a)的80~90%,可见,就目前而言,垃圾焚烧排放的二噁英类所占比重是很大的。 另外,还存在其他一些二噁英类排放源,如燃煤电站、金属冶炼、抽烟以及含铅汽油的使用等,是环境二噁英类的次要来源。 6 废物焚烧与二噁英类排放 固体废物的焚烧过程是环境二噁英类的一个显著来源,那么在废物焚烧过程中,二噁英类是怎样形成的呢?概括起来,其形成途径有以下三种: 1. 碳、氢、氧和氯等元素通过基元反应生成PCDDs/PCDFs,称为 二噁英类的“从头合成(De Novo Synthesis)”。从头合成发生在燃烧等离子区或燃烧后的烟羽中,如果烟道气中含有HCl(或Cl-)、O2和H2O等物质,那么在300~400℃温度下就会在含碳飞灰的表面合成二噁英类,飞灰中的金属及其氧化物或硅酸盐是“从头合成”过程的催化剂(图2)。 ![]() 图2 二噁英类的从头合成过程示意图
2. 在燃烧过程中由含氯前体物通过有机化学反应生成二噁英类。前体物包括聚氯乙烯、氯代苯、五氯苯酚等,在燃烧中前体物分子通过重排、自由基缩合、脱氯或其他分子反应等过程生成PCDD和PCDF[10],生成温度为300~700℃。 3. 固体废物本身可能含有痕量的二噁英类。由于二噁英类具有一定的热稳定性,所以当固体废物燃烧时,如果没有达到分解破坏二噁英类分子的温度等条件,这些二噁英类就会被释放出来。对于燃烧温度较低的焚烧炉,这种情况是可能发生的。 上述三个途径在固体废物焚烧炉的二噁英类形成中都可能起作用,各种途径的重要性则取决于具体的炉型、工作状态和燃烧条件。由于各焚烧炉的处理量差别很大,而且其工艺设计和操作条件各异,所以几乎每个焚烧炉的二噁英类排放都会有所不同,即使同一制造商的同一炉型,也会因运行时间、操作状态和维护情况等条件的差别而有不同水平的二噁英类排放,而且差别会相当大。 7 二噁英类控制标准 7.1 二噁英类的人日容许摄入量 由于二噁英类是一种剧毒致癌物质,为了保障人体健康,保护环境,世界各国先后制定了二噁英类控制标准:人日容许摄入量(Tolerable Daily Intake, 简称TDI)。以每kg人体每天摄入多少毒性当量的二噁英类为单位,具体计算出每人一年内平均每天从食物、饮用水、大气等途径摄取的二噁英类总量,制定TDI值。如世界卫生组织(WHO)最新规定的TDI值为1~4pg/kg-d,普通人的实际摄取量超过TDI的概率很小,目前工业化国家每人每日摄取量约1~3 pg/kg-d。 7.2 二噁英类的排放标准 不少国家已经制定了生活垃圾焚烧设施的二噁英类排放标准(表5)。 表5 世界各国生活垃圾焚烧设施的二噁英类排放标准
8 二噁英类分析方法 环境二噁英类的污染评价和控制,都离不开准确可靠的分析方法。二噁英类的分析测定被视为现代有机分析的难点,它要求超微量多组分定量分析,分析仪器多采用气相色谱/质谱联用仪(GC/MS)。测定环境二噁英类必须具备的技术条件包括:有效的采样技术、从样品中提取出10-12~10-15量级的二噁英类、从初步的粗提物中分离去除其它有机物、分离出与二噁英类性质接近的其它氯代芳香族有机物、高效分离二噁英类异构体、可靠定性和准确定量以及安全防毒的实验条件等。对分析过程的要求非常严格:样品采集的代表性,化学前处理的选择性、特异性和回收率,测定的灵敏度、分离度、准确性、重复性及可靠性等方面都有较高的要求,并且要进行实验室间和实验室内的质量控制和保证。 美国、日本和欧洲均制定了环境二噁英类的排放标准和有关监测分析方法标准,而且针对不同基质或对象(来源)的样品有不同的二噁英类标准分析方法,这主要是因为基质不同的二噁英类样品其前处理方法可以有很大的不同。例如美国已经颁布的标准方法就包括了排气、空气、废水、食品、生物样品等各种基质二噁英类样品的分析。国内目前尚未颁布有关二噁英类分析方法的标准。 最早出现的二噁英类测定方法采用了低分辨率质谱仪(LRMS),对测定浓度范围的选择性和响应等方面都有问题,只能测定一种或几种2,3,7,8-位氯代异构体。在较新的分析方法中,都采用了分辨率10000以上的高分辨质谱仪(HRMS),并使用17种以上的同位素标记二噁英类作为内标物质,可以对全部17种2,3,7,8-位氯代异构体准确定量,大大提高了分析灵敏度和准确性,但同时也增加了分析难度和成本。这些二噁英类分析方法在使用同位素标记化合物作为内标物质、液-液萃取和索氏提取、硅胶柱净化、HRGC/HRMS定性和定量等方面的技术路线基本是一样的。但在细节上和技术指标上仍有一定的差别。以下是对部分二噁英类标准分析方法的简单介绍。 (1)美国EPA方法613:最早的二噁英类分析方法标准,分析工业废水、城市污水中的2,3,7,8-TCDD;样品经萃取后,用氧化铝柱及硅胶柱净化;采用SP-2330色谱柱, LRMS或HRMS分析;内标为13C或37Cl标记的2,3,7,8-TCDD; (2)美国EPA方法8280:分析土壤、底泥、飞灰、燃油、蒸馏残渣和水等废物中含4~8个氯的PCDDs/PCDFs;样品提取后,经碱液、浓硫酸、氧化铝及PX-2活性碳柱净化,采用HRGC/LRMS分析。可选择三种色谱柱:CP-sil-88、DB-5或SP-2250,内标为13C标记的8种2,3,7,8-位氯代异构体,是后续方法的发展基础,现已推出8280A(1995)和8280B(1998)等新版本; (3)美国EPA方法513:分析饮用水中的2,3,7,8-TCDD;水样经提取,用酸碱改性硅胶柱、氧化铝柱以及PX-21活性碳柱净化,采用HRGC/HRMS分析;色谱柱为SP2330或CP-sil-88;内标为13C标记的2,3,7,8-TCDD和1,2,3,4-TCDD以及37Cl标记的2,3,7,8-TCDD; (4)美国EPA方法8290:是8280方法的发展,主要差别是分析仪器使用了HRGC/HRMS;DB-5色谱柱,并用DB-225柱重复分离;内标使用13C或37Cl标记的11种异构体。最低检出限达到10-12以下。 (5)美国方法TO-9:环境空气中的二噁英类分析方法,用装填聚胺酯(PUF)泡沫的吸附柱吸附环境空气中的二噁英类,吸附柱用苯萃取后,用酸化改性的硅胶及酸性氧化铝柱净化,采用HRGC/HRMS分析,色谱柱为DB-5;内标为13C标记的2,3,7,8-TCDD, 检测限为1~5pg/m3。 (6)美国EPA方法23:烟道气中的二噁英类采样和分析方法,可测定17种2,3,7,8-位氯代异构体;用滤筒加XAD-2吸附柱进行等速采样,样品经提取后,用改性硅胶、碱性氧化铝净化,净化液用HRGC/HRMS分析;色谱柱为长60m的DB-5及长30m的DB225,质谱的分辨率至少为10000;以13C标记的19种二噁英类异构体为内标,可以对17种2,3,7,8-位氯代异构体单独定量,得到准确的毒性当量结果,并规定了严格的质量控制措施。 (7)美国EPA方法1613:类似于方法8290,但是可以测定土壤、底泥、组织及其它样品中的17种二噁英类异构体,样品的前处理程序比较复杂;样品先以酸、碱萃取,再以酸碱改性硅胶、HPLC、AX-211活性碳柱、GPC等净化;使用17种13C标记的2,3,7,8-位氯代异构体内标,因此可以对17种2,3,7,8-位氯代异构体单独定量,得到准确的毒性当量结果,并规定了严格的质量控制措施。所以比方法8290的精确度更高,但是分析成本也更高。 (8)欧洲标准化委员会(CEN)标准EN1948:类似于美国的方法23,规定了固定源二噁英类的采样和测定方法,推动了二噁英类分析方法的国际标准化趋势。 (9)日本工业标准JIS K0311:日本在1999年修订的最新版固定源排气中二噁英类标准分析方法。该标准建立在欧洲和美国现有标准的基础之上,并结合了日本近十年的研究经验,具有更强的针对性和良好的可操作性,有严格的质量控制措施。采用了世界卫生组织WHO的新规定,将共平面多氯联苯(co-PCBs)也纳入了二的范畴,要求同时分离和测定样品中的二噁英类和co-PCBs,增加了分析难度和成本。 (10)日本工业标准JIS K0312:工业废水和污水中的二噁英类标准分析方法。 国家环境分析测试中心目前采用的焚烧设施二噁英类监测分析方法,等效于日本标准JIS K0311,采用同位素稀释HRGC/HRMS技术分析废气样品中四至八氯代二苯并-对-二噁英类(PCDDs)和二苯并呋喃(PCDFs),并与日本同类实验室进行过比对分析,结果达到了国际先进水平。2003年3月,国家环境分析测试中心二噁英类监测项目通过了国家质量监督检验检疫总局的认证,面向全国承担焚烧设施排放二噁英类的采样、分析任务。 9 结语 二噁英类属于高度持久性化合物,对土壤和底泥具有强烈的亲和性,很容易在生物组织中积累。它们几乎是无处不在的,在大气、水体、土壤、底泥、动物、食物等介质中都已经发现了二噁英类。近十几年来,工业发达国家在二噁英类的来源、毒性和风险评价方面已经做了很多研究,并日益受到世界各国的重视。我国的环境保护工作正在走向与国际接轨,鉴于我国不断增加的医疗及工业废物焚烧和筹建中的城市垃圾焚烧炉都是潜在的二噁英类排放源,所以应及早制定环境二噁英类的排放标准和建立监控机构,以有效监控二噁英类污染,保障人民身体健康和环境生态安全。 |
甄长红 版权所有
|
copyright 1991-2019 青果园电厂化学资料网 ( www.qgyhx.cn ) All rights reserved 陇ICP备09001450号 |