循环流化床内的燃烧过程
1、煤粒送入循环流化床内迅速受到高温物料和烟气的辐射而被加热,首先水分蒸发,然后煤粒中的挥发份析出并燃烧、最后是焦炭的燃烧。其间伴随着煤粒的破碎、磨损,而且挥发份析出燃烧过程与焦炭燃烧过程都有一定的重叠。煤粒在流化床中的燃烧过程如图所示。
循环流化床内沿高度方向可以分为密相床层和稀相空间,密相床层运行在鼓泡床和紊流床状态。循环流化床内绝大部分是惰性的灼热床料,其中的可燃物只占很小的一部分。这些灼热的床料成为煤颗粒的加热源,在加热过程中,所吸收的热量只占床层总热容量的千分之几,而煤粒在10秒钟左右就可以燃烧(颗粒平均直径在0~8mm),所以对床温的影响很小。
2、循环流化床内煤的燃料着火
流化床内燃料着火的方式,固体质点表面温度起着关键作用,是产生着火的点灶热源,这类固体近质点可以是细煤粒,也可以是经分离后的高温灰粒或者是布风板上的床料。当固体质点表面温度上升时,煤颗粒会出现迅猛着火。另外,颗粒直径大小对着火也有很大的影响,对一定反应能力的煤种,在一定的温度水平之下,有一临界的着火粒径,小于这个颗粒直径,因为散热损失过大,燃料颗粒就不能着火,逸出炉膛。
3. 循环流化床内煤的破碎特性
煤在流化床内的破碎特性是指煤粒在进入高温流化床后粒度急剧减小的一种性质。但引起粒度减小的因素还有颗粒与剧烈运动的床层间磨损以及埋管受热面的碰撞等。影响颗粒磨损的主要因素是颗粒表面的结构特性、机械强度以及外部操作条件等。磨损的作用贯穿于整个燃烧过程。
煤粒进入流化床内时,受到炽热床料的加热,水份蒸发,当煤粒温度达到热解温度时,煤粒发生脱挥发份反应,对于高挥发份的煤种,热解期间将伴随一个短时发生的拟塑性阶段,颗粒内部产生明显的压力梯度,一旦压力超过一定值,已经固化的颗粒表层可能会崩裂而形成破碎;对低挥发份煤种,塑性状态虽不明显,但颗粒内部的热解产物需克服致密的孔隙结构都能从煤粒中逸出,因此颗粒内部也会产生较高的压力,另外,由于高温颗粒群的挤压,颗粒内部温度分布不均匀引起的热应力,这种热应力都会引起煤颗粒破碎。
煤粒破碎后会形成大量的细小粒子,特别是一些可扬析粒子会影响锅炉的燃烧效率。细煤粒一般会逃离旋风分离器,成为不完全燃烧损失的主要部分。破碎分为一级破碎和二级破碎,一级破碎是由于挥发份逸出产生的压力和孔隙网络中挥发份压力增加而引起的。二级破碎是由于作为颗粒的联结体------形状不规则的联结“骨架”(类似于网络结构)被烧断而引起的破碎。
煤的破碎发生的同时也会发生颗粒的膨胀,煤的结构将发生很大的变化。一般破碎和膨胀受下列因素的影响:挥发份析出量;在挥发份析出时,碳水化合物形成的平均质量;颗粒直径;床温;在煤结构中有效的孔隙数量;母粒的孔隙结构等。
4、循环流化床的脱硫与氮氧化物的排放控制
SO2是一种严重危害大气环境的污染物,SO2与水蒸汽进行化学反应形成硫酸,和雨水一起降至地面即为酸雨。NOX包括NO、NO2、NO3三种,其中NO也是导致酸雨的主要原因之一,同时它还参加光化学作用,形成光化学烟雾,还造成了臭氧层的破坏。
煤加热至 400℃时开始首先分解为H2S,然后逐渐氧化为SO2。其化学反方程式为
FeS2 + 2H2 → 2H2S + Fe
H2S + O2 → H2 + SO2
对SO2形成影响最大的因素是床温和过量空气系数,床温升高、过量空气系数降低则SO2越高。
循环流床燃烧过程中最常用的脱硫剂就石灰石,当床温超过其煅烧温度时,发生煅烧分解反应:
CaCO3 → CaO + CO2 ─ 183KJ/mol
脱硫反应方程式为:
CaO + SO2 + 1/2 O2 → CaSO4