会员投稿

网站管理

设为首页

加入收藏

 

当前位置:首页 > 锅炉专业 > 详细内容
轴流压缩机首级叶片疲劳断裂的原因分析
发布时间:2009/10/24  阅读次数:3631  字体大小: 【】 【】【
本广告位全面优惠招商!欢迎大家投放广告!广告投放联系方式
  从图3和图4的叶片折断口中也看出,折断区有微裂纹、融合、耳朵状断层,表明可能反复出现了较 高峰 应力,达到材料的塑性变形范围。叶片断面在较低应力下扩展。断口羽毛状结构、折断口晶粒区、动叶表面和断口表面的腐蚀,说明了腐蚀坑为裂纹开始点,腐蚀促进了断层扩展。可能会反复出现类似旋转脱离或喘振的现象,而使叶片裂纹在交变应力的作用下不断扩展从而导致断裂。
 
4  压缩机首级动叶片疲劳断裂原因分析
4.1  压缩机长期在最小流量下运转导致首级动叶片疲劳断裂
   根据西安交通大学对该轴流压缩机的流动计算和研究表明 : 压缩机在最小、正常和最大流量下运行时,相对地存在3种流动情况。
   (1)当压缩机在最小流量85000m/h 运行时, 下一级动静叶的流动状况最为恶劣,在静叶中分离充斥整个流道,在一级动叶叶顶附近也出现分离逆流现象。所以压缩机在最小流量下工作时的压比和效率都下降,分别下降1.13251和76.5%,尤其效率下降最大。
   (2)当压缩机在正常流量122591m/h(设计点流量)下运转时,叶道内部流动明显改善,尤其是减少了叶根处的流动分离,叶中和叶顶基本没有分离,流动情况改善的直接结果就是效率的提高,冲角接近最佳值。这时压缩机压比和效率达到最大,压比和效率分别达1.1347和 86.5% 。
  (3)当压缩机在最大流量 149833m/h 时,流动状况也不太稳定,出现了较强烈分离;叶根附近叶片上压力面的分离比较严重,尤其是在静叶上的分离最为明显,分离区基本上集中在压力面上,吸力面分离不明显,前导叶尾部也有明显的分离。这时压缩机压比和效率降低不多,压比和效率下降1.1347 和85.5%。
   所以当流量偏离设计点 , 减小或者增大时,流动损失增加,尤其是当流量控制在最小时最为明显。当流量减小时,在首级动叶的顶部最先出现逆流;当流量更小时,叶片进口的漩涡区继续扩大,此时,叶片间流道内气体的离心力不能与径向压力保持平衡,气体不再沿轴线方向流动,从而发生倾斜流动,产生了气流分离。这就发生了旋转脱离,即旋转失速现象。 如果 旋转失速时气体激振力的频率或倍频与叶片的固有动频相吻合,则会造成动叶片振动。
   该压缩机虽然使用前6级静叶可调来调节流量,但转动静叶减小或增大流量时,只能保证首级动叶叶高中间截面的气流方向与动叶安装角度相同。而不能保证首级动叶叶高其它截面的气流方向与动叶安装角度相同,故压缩机长期在最小流量工作时,会产生不太严重的气体旋转脱离现象。
   从操作方面对压缩机首级动叶断裂影响考虑,其影响因素有两个方面。
  (1)因催化裂化装置在1990~2000年炼油量较小,压缩机的静叶可调长期控制在最小位置的小流量(8500m/h) 下工作,即长期在气流稳定区和严重气流旋转脱离区交界点工作,气流容易发生旋转脱离,使压缩机叶片产生振动。发生了3次首级叶片疲劳断裂。
  (2)压缩机进口过滤器结构落后。进风格栅通流面积太小。过滤器滤布仍采用卷帘式蓬松纤维毛毡过滤,需人工更换或转动滚筒更换,更换困难。且蓬松纤维毛毡两侧与过滤窗口贴合面缝隙太大,基本上不接合,密封效果差,空气容易走短路,过滤效率低。以致大的催化剂粉尘和颗粒可以直接进入压缩机内。对压缩机叶片直接冲刷从而造成损伤。
   进口过滤器进风格栅通流面积太小,约7m, 流速太快,特别南方雨水多,雨水把催化剂粉尘和灰尘粘在进风格栅上,造成了严重堵塞。 1998年5月,曾发生过进风格栅上粘有大量催化剂粉尘和灰尘,使压缩机流量大幅度降低,即使增大可调静叶角度仍无效。只好进行不停机紧急清理。这必然使压缩机进入旋转失速区工作,流动恶化,会引起压缩机首级叶片振动而疲劳损坏。
   压缩机1#转子在1994年1月4日发生的首级叶片断裂前,钳工曾进入过滤器内更换过滤纤维毛毡,导致了大块过滤纤维毛毡被吸入压缩机内;叶片断裂后,打开压缩机检查,发现压缩机首级静叶前吸着两大块过滤纤维毛毡,遮挡住进口风道,影响了吸入风量。并有小块过滤纤维毛毡进入了压缩机。根据操作记录,1993年12月19日压缩机出口流量只有 76304m/h,此后到压缩机叶片断裂这段时间,压缩机出口流量也只有93646m/h。很可能是这 两大块过滤纤维毛毡影响了压缩机流量。使压缩机进入了气体旋转脱离区工作。气流发生了旋转脱离,使压缩机叶片产生振动。导致首级叶片疲劳断裂。
4.2  压缩机首级动叶动频的 倍频与气流激振力频率接近易发生振动而导致疲劳断裂
   叶片在运行中的气流激振力使叶片产生受迫振动。由于叶片制造的偏差和理论设计的误差及受气体流动尾迹的影响,即使 首级动叶 在设计点流量工作时,气体的流动方向也不可能与叶片的形状一致,气体会产生轻微漩涡和偏离流动,因而在首级动叶就会产生能量很小的气流激振力。 如果首级动叶偏离 设计点流量工作,流量减小或增大时,会使气流冲角与动叶进口安装角不相等,气体产生的漩涡和偏离流动更加厉害。因而在首级动叶产生的气流激振力会更大,尤其是小流量工作时更加突出,对首级动叶产生的气流激振力要比大流量工作时要大得多。气流激振力对动叶产生较大的振动,使叶片高速摆动,动叶根部为刚性固定。动叶根部一般不摆动,而叶顶摆动幅度最大,叶片越长,摆动幅度越大。 振动导致首级叶片产生循环载荷结果见图5。
   在正常流量工作状态下,气流冲角与动叶进口安装角相等。高速旋转的动叶受到离心载荷和气流力的联合作用。这种作用是正常的,作用力的方向和大小是恒定的。只是使叶片产生弯曲变形,在叶背产生压应力,在叶面产生拉应力,但这种受力情况不会改变。即一般不认为会对动叶产生大的来回摆动。即叶片振动。在正常流量工作时产生气流激振力的能量有限,一般对动叶振动影响很小。离心载荷和气流力对叶片作用效果见图5。
  气流激振力的频率对动叶振动影响较大。当气流激振力的1阶频与动叶动频相等时,对动叶产生最大振动。当气流激振力的高阶频率与动叶动频相等时,也会对动叶产生振动,但随着气流激振力阶数的增加,对动叶产生振动能量逐渐减弱。通常,只考虑气流激振力的5阶频率以内的频率对动叶产生一定振动能量。而更高阶气流激振频率对叶片产生振动能量很小。根据该压缩机首级叶片的C ampbll图得到气流激振力的频率(见表5)。
表 5 气流激振力的频率
阶数
1
2
3
4
5
6
7
8
9
10
11
12
气流激振频率/Hz
100
180
260
375
465
575
660
760
860
945
1040
1120
  从表4和表7中看出,该压缩机偏离设计点流量操作 , 尤其是小流量操作时 , 产生的气流激振力的第10阶激振频率(945Hz)和第12阶激振频率(1120Hz)分别与首级动叶片的第2阶频率(910.8Hz)和第3阶频率(1093.8Hz)接近,存在着诱发共振的可能,是造成 首级动叶疲劳断裂的原因之一。
4.3  压缩机首级动叶动频与转速 频率的倍频接近易 发生共振
  压缩机在正常转速5703r/min 运行时工频(95.1Hz)的3倍频与动叶的1阶动频308Hz接近,避开余度不够,容易诱发共振。 所以首级动叶应进行调频。压缩机升速过程中 , 压缩机升速台阶3700r/min时 频率(61.7Hz)的5倍频与动叶的一阶动频308Hz重合,也容易诱发共振。若压缩机在此转速停留时间太长,首级动叶可能发生共振。压缩机升速台阶频率见表6 。
我要评论
  • 匿名发表
  • [添加到收藏夹]
  • 发表评论:(匿名发表无需登录,已登录用户可直接发表。) 登录状态:未登录
最新评论
所有评论[0]
    暂无已审核评论!
广告

甄长红  版权所有 

copyright 1991-2019 青果园电厂化学资料网 ( www.qgyhx.cn ) All rights reserved 陇ICP备09001450号

申请链接  广告服务  联系我们  关于我们  版权声明  在线留言

网站由中网提供技术支持