- 轴流压缩机首级叶片疲劳断裂的原因分析
- 发布时间:2009/10/24 阅读次数:3633 字体大小: 【小】 【中】【大】
表6 压缩机升速台阶频率
升速台阶/(r/min) |
500 |
1700 |
3700 |
5200 ~ 5400 |
5703 |
工作频率/Hz |
8.3 |
28.3 |
61.7 |
86.7 ~ 90 |
95.1 | |
4.4 压缩机首级叶片强度不足容易断裂
根据西安交通大学对该压缩机首级动叶的计算和研究,采用流线曲率法计算的流场积分得到的叶片受力分布见表7。 |
表7 首级动叶片受到的气体切向和轴向方向的作用力分布
半径/mm |
200.1 |
232.9 |
261.5 |
287.5 |
311.6 |
334.1 |
355.45 |
375.9 |
平均切向力/N |
26.19 |
23.06 |
21.07 |
19.98 |
19.45 |
19.21 |
19.27 |
20.58 |
平均轴向力/N |
19.09 |
19.19 |
19.67 |
20.29 |
21.08 |
22.11 |
23.46 |
26.23 |
平均合力/N |
32.40 |
30.0 |
28.82 |
28.48 |
28.68 |
29.29 |
30.36 |
33.33 |
最大切向力/N |
28.43 |
25.17 |
22.96 |
22.01 |
21.86 |
21.85 |
22.07 |
23.77 |
最大轴向力/N |
20.74 |
20.95 |
21.45 |
22.37 |
23.7 |
25.16 |
26.89 |
30.3 |
最大合力/N |
35.19 |
32.75 |
31.42 |
31.38 |
32.24 |
33.32 |
34.79 |
38.51 | |
由表7计算得:平均切向力为168.81N;瞬时最大力为188.12N;平均轴向力为171.12N;瞬时最大力为191.56N;平均轴向力和平均切向力的合力为240.37N 。显然,首级动叶片受力较大。 压缩机喘振时,首级动叶摆动幅度最大达到1.024mm(沿周向。 由于偏心离心力的作用,叶片最大的应力区域位于叶片底截面的背弧侧。最大的径向应力为276.5MPa,最大的等效应力为299.5MPa。 按首级 叶片型线的计算,其叶片底部气流引起的弯曲应力为25MPa,通常安全系数取 1.2,则实际气流弯曲应力为30MPa 。如按照我国汽轮机进排气级叶片(调频叶片)许用气流弯曲应力为25~35MPa。所以认为 首级动 叶片的气流弯曲应 力是比较大的,动叶片底部强度裕量不是很充分。显然,对比国内外其它厂家的轴流压缩机,首级动叶片薄而且细长,设计的安全裕度小,可能 是造成 首级动叶损坏的原因之一。 要降低首级动叶片底部弯曲应力,应增加动叶片底部厚度和宽度。将叶片厚度增加,叶根部分截面积增加30%进行分析计算,调整后叶片最大的应力区域仍位于叶片根部,但应力值是有所降低,最大的等效应力为 284MPa 。最大的位移变形分量为0.533mm。减少16MPa。同时压缩机在正常流量时,压比从1.147下降到1.138,效率从0.8639下降到0.8498。
4.5 压缩机首级叶片受腐蚀介质影响损坏 叶片断裂不仅与叶片的设计状态点有关,还与叶片工作所处的环境介质和实际运行工况有关。在腐蚀介质中运行的叶片表面的腐蚀物会促进疲劳裂纹的萌生和扩展,材料的疲劳强度显著降低;从压缩机首 级叶片根部的断口看出,断口中出现了许多坑点。这些坑点就是腐蚀坑点。德国曼透平公司对首级叶片首次断裂断口的化学检验分析表明:对断层表面的沉积物作了化学检验分析,发现含有较高的外来杂质硫和氯;对清洗后断层表面腐蚀坑的沉积物进行化学检验分析,也发现沉积较高的外来杂质硫和氯,且腐蚀坑中钛含量要比断层表面高得多。显然叶片受到了腐蚀而出现了许多腐蚀坑,有些腐蚀坑还较深(图6和图7)。 |
|
该催化裂化装置地处南方临海,湿度较大,易发生露点腐蚀,海风携带的盐雾较多。且该催化裂化装置南边有一套污水汽提装置,有硫化氢泄漏出来。这些氯离子和硫化氢进入了压缩机,因压缩机首级叶片的空气介质温度为常温,且叶片没有喷涂防腐保护层。氯离子和硫化氢与首级叶片直接接触,发生了露点腐蚀。从1994年1月25日断裂的首级动叶片中看出(见图2),在叶背根部首先出现腐蚀坑点,由于叶背根部应力最大, 应力越大,应力越集中,越容易发生应力腐蚀。在小流量或喘振引起的激振力作用下振动,使腐蚀坑点逐渐发展成为裂纹,在交变应力作用下,裂纹逐渐扩展。当裂纹扩展到一定程度,叶片根部其余未断部分不足以承受工作负荷时,最终折断。从图2叶片断口横截面积只留有 10% 残余折断面积可看出,当时压缩机是在较低负荷下运行折断。其余两次首级叶片断裂的情况也类似。
4.6 压缩机喘振造成首级叶片疲劳断裂
喘振与出口管网阻力有较大关系。当出口管网压力升高,阻力增加,流量下降,进入压缩机动叶的气流冲角将增大,使叶背容易产生气流脱离。如出口管网压力继续升高,流量继续下降到一定程度,结果会在动叶中出现突变失速。流动性能大大恶化,压缩机出口压力明显下降。这时管网压力大于压缩机出口压力,气体会出现倒流,发生喘振。 该压缩机的防喘振控制器虽然好用,但由于放空线与喘振线的余量只有10%,往往会出现放空阀打开和喘振同时发生的情况。说明放空阀打开仍不够及时,未能起到防喘振作用。该压缩机 首级叶片1992年11月9日断裂前,压缩机出口单向阻尼阀曾发生过故障约10min ,出现了出口单向阻尼阀和放空阀连续关闭 — 打开现象,原因是当出口单向阻尼阀关闭时,压缩机出口压力升高,在出口单向阻尼阀前后形成压差把阻尼阀打开;待出口单向阻尼阀打开后,压差消失,出口单向阻尼阀在重锤重力的作用下又关闭。同时,放空阀因压缩机出口压力升高、流量降低,工作点进入放空线而打开。待出口压力降低、流量升高后放空阀又关闭。每放空一次,伴随着一次喘振,喘振记录仪记录一次。出口单向阻尼阀和放空阀关闭 — 打开、压缩机喘振周而复始循环。这可能也是 压缩机 首级叶片1992年11月9日疲劳断裂的原因之一。 从首级叶片断口金相组织的分析结果可见:机组叶片的损坏与机组发生喘振有着密切的关系,特别是停机过程中的喘振可能对叶片的事故有重要的影响。所以正常停机时,压缩机应放空后再停机。
4.7 静叶调节失灵和动静叶片沾有污物恶化了气体流动 因压缩机运行周期长,可调静叶调节连杆的青铜轴承润滑油干枯和粉尘的侵入,致使润滑失效,长期得不到维修。1994年拆机时曾发现许多可调静叶转不动,青铜轴承已磨坏。与其它能转动的同级可调静叶转动角度不一致。此外,动静叶上沾有一层厚厚的污物,这些肯定会使气体流动恶化。会对叶片产生较大激振力引起振动,使首级叶片疲劳断裂。
5 结论
综合上述,影响压缩机3次首级叶片疲劳断裂的因素有很多,但主要的影响因素有:(1)压缩机长期在小流量下运转;(2)叶片动频的 倍频 与 气流激振力频率接近;(3)叶片强度不足;(4)受环境腐蚀介质影响;(5)压缩机发生 喘振;(6)进口过滤器有缺陷;(7)检修维护不周全。 |